Пример #1
0
def make_analysis_forms(
        basepath="/orange/adamginsburg/web/secure/ALMA-IMF/October31Release/",
        base_form_url="https://docs.google.com/forms/d/e/1FAIpQLSczsBdB3Am4znOio2Ky5GZqAnRYDrYTD704gspNu7fAMm2-NQ/viewform?embedded=true",
        dontskip_noresid=False):
    import glob
    from diagnostic_images import load_images, show as show_images
    from astropy import visualization
    import pylab as pl

    savepath = f'{basepath}/quicklooks'

    try:
        os.mkdir(savepath)
    except:
        pass

    filedict = {
        (field, band, config, robust, selfcal): glob.glob(
            f"{field}/B{band}/{imtype}{field}*_B{band}_*_{config}_robust{robust}*selfcal{selfcal}*.image.tt0*.fits"
        )
        for field in
        "G008.67 G337.92 W43-MM3 G328.25 G351.77 G012.80 G327.29 W43-MM1 G010.62 W51-IRS2 W43-MM2 G333.60 G338.93 W51-E G353.41"
        .split() for band in (3, 6)
        #for config in ('7M12M', '12M')
        for config in ('12M', )
        #for robust in (-2, 0, 2)
        for robust in (0, ) for selfcal in ("", ) + tuple(range(0, 9))
        for imtype in (('', ) if 'October31' in basepath else ('cleanest/',
                                                               'bsens/'))
    }
    badfiledict = {key: val for key, val in filedict.items() if len(val) == 1}
    print(f"Bad files: {badfiledict}")
    filedict = {key: val for key, val in filedict.items() if len(val) > 1}
    filelist = [key + (fn, ) for key, val in filedict.items() for fn in val]

    prev = 'index.html'

    flist = []

    #for field in "G008.67 G337.92 W43-MM3 G328.25 G351.77 G012.80 G327.29 W43-MM1 G010.62 W51-IRS2 W43-MM2 G333.60 G338.93 W51-E G353.41".split():
    ##for field in ("G333.60",):
    #    for band in (3,6):
    #        for config in ('7M12M', '12M'):
    #            for robust in (-2, 0, 2):

    #                # for not all-in-the-same-place stuff
    #                fns = [x for x in glob.glob(f"{field}/B{band}/{field}*_B{band}_*_{config}_robust{robust}*selfcal[0-9]*.image.tt0*.fits") ]

    #                for fn in fns:
    for ii, (field, band, config, robust, selfcal, fn) in enumerate(filelist):

        image = fn
        basename, suffix = image.split(".image.tt0")
        if 'diff' in suffix or 'bsens-cleanest' in suffix:
            continue
        outname = basename.split("/")[-1]

        if prev == outname + ".html":
            print(
                f"{ii}: {(field, band, config, robust, fn)} yielded the same prev "
                f"{prev} as last time, skipping.")
            continue

        jj = 1
        while jj < len(filelist):
            if ii + jj < len(filelist):
                next_ = filelist[ii + jj][5].split(".image.tt0")[0].split(
                    "/")[-1] + ".html"
            else:
                next_ = "index.html"

            if next_ == outname + ".html":
                jj = jj + 1
            else:
                break

        assert next_ != outname + ".html"

        try:
            with warnings.catch_warnings():
                warnings.filterwarnings('ignore')
                print(f"{ii}: {(field, band, config, robust, fn, selfcal)}"
                      f" basename='{basename}', suffix='{suffix}'")
                imgs, cubes = load_images(basename, suffix=suffix)
        except KeyError as ex:
            print(ex)
            raise
        except Exception as ex:
            print(f"EXCEPTION: {type(ex)}: {str(ex)}")
            raise
            continue
        norm = visualization.ImageNormalize(
            stretch=visualization.AsinhStretch(),
            interval=visualization.PercentileInterval(99.95))
        # set the scaling based on one of these...
        # (this call inplace-modifies logn, according to the docs)
        if 'residual' in imgs:
            norm(imgs['residual'][imgs['residual'] == imgs['residual']])
            imnames_toplot = ('mask', 'model', 'image', 'residual')
        elif 'image' in imgs and dontskip_noresid:
            imnames_toplot = (
                'image',
                'mask',
            )
            norm(imgs['image'][imgs['image'] == imgs['image']])
        else:
            print(
                f"Skipped {fn} because no image OR residual was found.  imgs.keys={imgs.keys()}"
            )
            continue
        pl.close(1)
        pl.figure(1, figsize=(14, 6))
        show_images(imgs, norm=norm, imnames_toplot=imnames_toplot)

        pl.savefig(f"{savepath}/{outname}.png", dpi=150, bbox_inches='tight')

        metadata = {
            'field': field,
            'band': band,
            'selfcal': selfcal,  #get_selfcal_number(basename),
            'array': config,
            'robust': robust,
            'finaliter': 'finaliter' in fn,
        }
        make_quicklook_analysis_form(filename=outname,
                                     metadata=metadata,
                                     savepath=savepath,
                                     prev=prev,
                                     next_=next_,
                                     base_form_url=base_form_url)
        metadata['outname'] = outname
        metadata['suffix'] = suffix
        if robust == 0:
            # only keep robust=0 for simplicity
            flist.append(metadata)
        prev = outname + ".html"

    #make_rand_html(savepath)
    make_index(savepath, flist)

    return flist
Пример #2
0
import pylab as pl
from diagnostic_images import load_images, show

imgs_before_b6, cubes_before_b6 = load_images('W51-E_B6_uid___A001_X1296_X215_continuum_merged_12M_robust0')
imgs_after_b6, cubes_after_b6 = load_images('W51-E_B6_uid___A001_X1296_X215_continuum_merged_12M_robust0_selfcal1')

show(imgs_before_b6, vmin=-0.001, vmax=0.01)
pl.savefig("W51-E_B6_before_selfcal.png", bbox_inches='tight')

show(imgs_after_b6, vmin=-0.001, vmax=0.01)
pl.savefig("W51-E_B6_after_selfcal.png", bbox_inches='tight')


show(imgs_before_b6, vmin=-0.001, vmax=0.3, zoom=[slice(380,900), slice(480,760)])
pl.savefig("W51-E_B6_before_selfcal_zoom.png", bbox_inches='tight')

show(imgs_after_b6, vmin=-0.001, vmax=0.3, zoom=[slice(380,900), slice(480,760)])
pl.savefig("W51-E_B6_after_selfcal_zoom.png", bbox_inches='tight')


imgs_before_b3, cubes_before_b3 = load_images('W51-E_B3_uid___A001_X1296_X10b_continuum_merged_12M_robust0')
imgs_after_b3, cubes_after_b3 = load_images('W51-E_B3_uid___A001_X1296_X10b_continuum_merged_12M_robust0_selfcal1')

show(imgs_before_b3, vmin=-0.001, vmax=0.01)
pl.savefig("W51-E_B3_before_selfcal.png", bbox_inches='tight')

show(imgs_before_b3, vmin=-0.001, vmax=0.1, zoom=[slice(680,1200),slice(850,1200)])
pl.savefig("W51-E_B3_before_selfcal_zoom.png", bbox_inches='tight')

show(imgs_after_b3, vmin=-0.001, vmax=0.01)
pl.savefig("W51-E_B3_after_selfcal.png", bbox_inches='tight')