Пример #1
0
def test_choose_initial_scaling_intensities(test_reflections):
    """Test for correct choice of intensities."""
    test_refl = test_reflections
    intstr = "prf"
    new_rt = choose_initial_scaling_intensities(test_refl, intstr)
    assert list(new_rt["intensity"]) == list(test_refl["intensity.prf.value"])
    assert list(new_rt["variance"]) == list(
        test_refl["intensity.prf.variance"])
    intstr = "sum"  # should apply partiality correction
    new_rt = choose_initial_scaling_intensities(test_refl, intstr)
    assert list(new_rt["intensity"]) == list(test_refl["intensity.sum.value"] /
                                             test_refl["partiality"])
    assert list(new_rt["variance"]) == pytest.approx(
        list(test_refl["intensity.sum.variance"] /
             flex.pow2(test_refl["partiality"])))
Пример #2
0
def refine_error_model(params, experiments, reflection_tables):
    """Do error model refinement."""

    # prepare relevant data for datastructures
    for i, table in enumerate(reflection_tables):
        # First get the good data
        table = table.select(~table.get_flags(table.flags.bad_for_scaling, all=False))

        # Now chose intensities, ideally these two options could be combined
        # with a smart refactor
        if params.intensity_choice == "combine":
            if not params.combine.Imid:
                sys.exit("Imid value must be provided if intensity_choice=combine")
            table = calculate_prescaling_correction(table)  # needed for below.
            I, V = combine_intensities(table, params.combine.Imid)
            table["intensity"] = I
            table["variance"] = V
        else:
            table = choose_initial_scaling_intensities(
                table, intensity_choice=params.intensity_choice
            )
        reflection_tables[i] = table
    space_group = experiments[0].crystal.get_space_group()
    Ih_table = IhTable(
        reflection_tables, space_group, additional_cols=["partiality"], anomalous=True
    )

    # now do the error model refinement
    model = BasicErrorModel(basic_params=params.basic)
    try:
        model = run_error_model_refinement(model, Ih_table)
    except (ValueError, RuntimeError) as e:
        logger.info(e)
    else:
        return model
Пример #3
0
    def create(cls, params, experiment, reflection_table, for_multi=False):
        """Perform reflection_table preprocessing and create a SingleScaler."""

        cls.ensure_experiment_identifier(experiment, reflection_table)

        logger.info(
            "The scaling model type being applied is %s. \n",
            experiment.scaling_model.id_,
        )
        try:
            reflection_table = cls.filter_bad_reflections(
                reflection_table,
                partiality_cutoff=params.cut_data.partiality_cutoff,
                min_isigi=params.cut_data.min_isigi,
                intensity_choice=params.reflection_selection.intensity_choice,
            )
        except ValueError:
            raise BadDatasetForScalingException

        # combine partial measurements of same reflection, to handle those reflections
        # that were split by dials.integrate  - changes size of reflection table.
        reflection_table = sum_partial_reflections(reflection_table)

        if "inverse_scale_factor" not in reflection_table:
            reflection_table["inverse_scale_factor"] = flex.double(
                reflection_table.size(), 1.0)
        elif (reflection_table["inverse_scale_factor"].count(0.0) ==
              reflection_table.size()):
            reflection_table["inverse_scale_factor"] = flex.double(
                reflection_table.size(), 1.0)
        reflection_table = choose_initial_scaling_intensities(
            reflection_table, params.reflection_selection.intensity_choice)

        excluded_for_scaling = reflection_table.get_flags(
            reflection_table.flags.excluded_for_scaling)
        user_excluded = reflection_table.get_flags(
            reflection_table.flags.user_excluded_in_scaling)
        reasons = Reasons()
        reasons.add_reason("user excluded", user_excluded.count(True))
        reasons.add_reason("excluded for scaling",
                           excluded_for_scaling.count(True))
        n_excluded = (excluded_for_scaling | user_excluded).count(True)
        if n_excluded == reflection_table.size():
            logger.info(
                "All reflections were determined to be unsuitable for scaling."
            )
            logger.info(reasons)
            raise BadDatasetForScalingException(
                """Unable to use this dataset for scaling""")
        else:
            logger.info(
                "Excluding %s/%s reflections\n%s",
                n_excluded,
                reflection_table.size(),
                reasons,
            )

        if params.reflection_selection.method == "intensity_ranges":
            reflection_table = quasi_normalisation(reflection_table,
                                                   experiment)
        if (params.reflection_selection.method
                in (None, Auto, "auto", "quasi_random")) or (
                    experiment.scaling_model.id_ == "physical"
                    and "absorption" in experiment.scaling_model.components):
            if experiment.scan:
                reflection_table = calc_crystal_frame_vectors(
                    reflection_table, experiment)
                alignment_axis = (1.0, 0.0, 0.0)
                reflection_table["s0c"] = align_axis_along_z(
                    alignment_axis, reflection_table["s0c"])
                reflection_table["s1c"] = align_axis_along_z(
                    alignment_axis, reflection_table["s1c"])
        try:
            scaler = SingleScaler(params, experiment, reflection_table,
                                  for_multi)
        except BadDatasetForScalingException as e:
            raise ValueError(e)
        else:
            return scaler