Пример #1
0
    def per_image(self):
        """Set one block per image for all experiments"""

        self._create_block_columns()

        # get observed phi in radians
        phi_obs = self._reflections["xyzobs.mm.value"].parts()[2]

        for iexp, exp in enumerate(self._experiments):

            sel = self._reflections["id"] == iexp
            isel = sel.iselection()
            exp_phi = phi_obs.select(isel)

            # convert phi to integer frames
            frames = exp.scan.get_array_index_from_angle(exp_phi, deg=False)
            frames = flex.floor(frames).iround()

            start, stop = flex.min(frames), flex.max(frames)
            frame_range = range(start, stop + 1)

            for f_num, f in enumerate(frame_range):
                sub_isel = isel.select(frames == f)
                f_cent = f + 0.5
                self._reflections["block"].set_selected(sub_isel, f_num)
                self._reflections["block_centre"].set_selected(sub_isel, f_cent)

        return self._reflections
Пример #2
0
  def per_image(self):
    """Set one block per image for all experiments"""

    self._create_block_columns()

    # get observed phi in radians
    phi_obs = self._reflections['xyzobs.mm.value'].parts()[2]

    for iexp, exp in enumerate(self._experiments):

      sel = self._reflections['id'] == iexp
      isel = sel.iselection()
      exp_phi = phi_obs.select(isel)

      # convert phi to integer frames
      frames = exp.scan.get_array_index_from_angle(exp_phi, deg=False)
      frames = flex.floor(frames).iround()

      start, stop = flex.min(frames), flex.max(frames)
      frame_range = range(start, stop + 1)

      for f_num, f in enumerate(frame_range):
        sub_isel = isel.select(frames == f)
        self._reflections['block'].set_selected(sub_isel, f_num)
        self._reflections['block_centre'].set_selected(sub_isel, f_num)

    return self._reflections
Пример #3
0
    def read_experiments(experiments, reflection_table):
        """
        Get information from experiments and reflections
        """

        # Get space group and unit cell
        space_group = experiments[0].crystal.get_space_group()
        sgno = space_group.type().number()
        unit_cell_list = []
        for e in experiments:
            assert sgno == e.crystal.get_space_group().type().number()
            unit_cell_list.append(e.crystal.get_unit_cell())

        if len(unit_cell_list) > 1:
            # calc mean unit cell
            mean_parameters = [0, 0, 0, 0, 0, 0]
            for uc in unit_cell_list:
                for i in range(6):
                    mean_parameters[i] += uc.parameters()[i]
            for i in range(6):
                mean_parameters[i] /= len(unit_cell_list)
            mean_unit_cell = uctbx.unit_cell(mean_parameters)
        else:
            mean_unit_cell = unit_cell_list[0]

        # Require a dials scaled experiments file.
        filtered_table = filter_reflection_table(reflection_table, ["scale"])
        filtered_table["intensity"] = filtered_table["intensity.scale.value"]
        filtered_table["variance"] = filtered_table["intensity.scale.variance"]
        filtered_table["dataset"] = filtered_table["id"]
        filtered_table["image"] = (
            flex.floor(filtered_table["xyzobs.px.value"].parts()[2]).iround() +
            1)

        return filtered_table, mean_unit_cell, space_group
Пример #4
0
    def read_experiments(self, experiments, reflections):
        """
        Get information from experiments and reflections

        """

        # Get space group and unit cell
        space_group = None
        unit_cell = []
        exp_identifiers = []
        for e in experiments:
            if space_group is None:
                space_group = e.crystal.get_space_group()
            else:
                assert (space_group.type().number() ==
                        e.crystal.get_space_group().type().number())
            unit_cell.append(e.crystal.get_unit_cell())
            exp_identifiers.append(e.identifier)
        # get a list of the ids from the reflection table corresponding to exp_ids
        identifiers = []
        for expit in exp_identifiers:
            for k in reflections.experiment_identifiers().keys():
                if reflections.experiment_identifiers()[k] == expit:
                    identifiers.append(k)
                    break

        # Selection of reflections
        selection = ~(reflections.get_flags(reflections.flags.bad_for_scaling,
                                            all=False))
        outliers = reflections.get_flags(reflections.flags.outlier_in_scaling)
        reflections = reflections.select(selection & ~outliers)

        # Scale factor
        inv_scale_factor = reflections["inverse_scale_factor"]
        selection = inv_scale_factor > 0
        reflections = reflections.select(selection)
        inv_scale_factor = reflections["inverse_scale_factor"]

        # Get the reflection data
        index = reflections["id"]

        miller_index = reflections["miller_index"]
        intensity = reflections["intensity.scale.value"] / inv_scale_factor
        variance = reflections["intensity.scale.variance"] / inv_scale_factor**2
        # calculate image number of observation (e.g 0.0 <= z < 1.0), image = 1
        images = flex.floor(
            reflections["xyzobs.px.value"].parts()[2]).iround() + 1
        # Get the MTZ file
        return self.DataRecord(
            unit_cell=unit_cell,
            space_group=space_group,
            miller_index=miller_index,
            dataset=index,
            intensity=intensity,
            variance=variance,
            identifiers=identifiers,
            images=images,
        )
Пример #5
0
def assign_batches_to_reflections(reflections, batch_offsets):
    """Assign a 'batch' column to the reflection table"""
    for batch_offset, refl in zip(batch_offsets, reflections):
        xdet, ydet, zdet = [flex.double(x) for x in refl["xyzobs.px.value"].parts()]
        # compute BATCH values - floor() to get (fortran) image captured within
        #                        +1     because FORTRAN counting; zdet+1=image_index
        #                        +off   because            image_index+o=batch
        refl["batch"] = (flex.floor(zdet).iround() + 1) + batch_offset
    return reflections
Пример #6
0
def assign_segment_index(reflections):
    """Divide a sphere into 12 segments of equal area."""
    seg_idx = flex.int(reflections.size(), -1)
    all_theta = flex.bool(reflections.size(), True)
    theta_idx_0 = reflections["theta"] < magic_theta
    theta_idx_2 = reflections["theta"] > (180.0 - magic_theta)
    theta_idx_1 = all_theta & ~(theta_idx_0 | theta_idx_2)

    phi_norm = flex.floor(reflections["phi"] / 90.0)
    phi_iround = phi_norm.iround()
    phi_idx = phi_iround % 4  # phi from -180 to 180
    seg_idx.set_selected(theta_idx_0, phi_idx)
    phi_idx += 8
    seg_idx.set_selected(theta_idx_2, phi_idx)
    phi_idx = (flex.floor(
        (reflections["phi"] + 45.0) / 90.00001).iround() % 4) + 4
    seg_idx.set_selected(theta_idx_1, phi_idx)
    assert flex.min(seg_idx) >= 0, flex.min(seg_idx)
    assert flex.max(seg_idx) <= 11, flex.max(seg_idx)
    reflections["class_index"] = seg_idx
    return reflections
Пример #7
0
 def _compute_background(self):
     print("Computing background for %d reflections" %
           len(self.reflections))
     self.reflections.compute_background(self.experiments)
     if False:
         for r in self.reflections:
             d = r["shoebox"].data
             b = r["shoebox"].background
             m = r["shoebox"].mask
             diff = d - b
             mask = (diff > 0).as_1d().as_int()
             mask.reshape(diff.accessor())
             diff = diff * mask.as_double().as_float()
             print((flex.floor(diff)).as_numpy_array())
Пример #8
0
def stats_imageset(imageset,
                   reflections,
                   resolution_analysis=True,
                   plot=False):
    n_spots_total = []
    n_spots_no_ice = []
    n_spots_4A = []
    total_intensity = []
    estimated_d_min = []
    d_min_distl_method_1 = []
    d_min_distl_method_2 = []
    noisiness_method_1 = []
    noisiness_method_2 = []

    image_number = reflections["xyzobs.px.value"].parts()[2]
    image_number = flex.floor(image_number)

    try:
        start, end = imageset.get_array_range()
    except AttributeError:
        start = 0
    for i in range(len(imageset)):
        stats = stats_single_image(
            imageset[i:i + 1],
            reflections.select(image_number == i + start),
            i=i + start,
            resolution_analysis=resolution_analysis,
            plot=plot,
        )
        n_spots_total.append(stats.n_spots_total)
        n_spots_no_ice.append(stats.n_spots_no_ice)
        n_spots_4A.append(stats.n_spots_4A)
        total_intensity.append(stats.total_intensity)
        estimated_d_min.append(stats.estimated_d_min)
        d_min_distl_method_1.append(stats.d_min_distl_method_1)
        noisiness_method_1.append(stats.noisiness_method_1)
        d_min_distl_method_2.append(stats.d_min_distl_method_2)
        noisiness_method_2.append(stats.noisiness_method_2)

    return group_args(
        n_spots_total=n_spots_total,
        n_spots_no_ice=n_spots_no_ice,
        n_spots_4A=n_spots_4A,
        total_intensity=total_intensity,
        estimated_d_min=estimated_d_min,
        d_min_distl_method_1=d_min_distl_method_1,
        noisiness_method_1=noisiness_method_1,
        d_min_distl_method_2=d_min_distl_method_2,
        noisiness_method_2=noisiness_method_2,
    )
Пример #9
0
def stats_per_image(experiment, reflections, resolution_analysis=True):
    n_spots_total = []
    n_spots_no_ice = []
    n_spots_4A = []
    total_intensity = []
    estimated_d_min = []
    d_min_distl_method_1 = []
    d_min_distl_method_2 = []
    noisiness_method_1 = []
    noisiness_method_2 = []

    image_number = reflections["xyzobs.px.value"].parts()[2]
    image_number = flex.floor(image_number)

    try:
        start, end = experiment.scan.get_array_range()
    except AttributeError:
        start, end = 0, 1
    for i in range(start, end):
        stats = stats_for_reflection_table(
            reflections.select(image_number == i),
            resolution_analysis=resolution_analysis,
        )
        n_spots_total.append(stats.n_spots_total)
        n_spots_no_ice.append(stats.n_spots_no_ice)
        n_spots_4A.append(stats.n_spots_4A)
        total_intensity.append(stats.total_intensity)
        estimated_d_min.append(stats.estimated_d_min)
        d_min_distl_method_1.append(stats.d_min_distl_method_1)
        noisiness_method_1.append(stats.noisiness_method_1)
        d_min_distl_method_2.append(stats.d_min_distl_method_2)
        noisiness_method_2.append(stats.noisiness_method_2)

    return StatsMultiImage(
        n_spots_total=n_spots_total,
        n_spots_no_ice=n_spots_no_ice,
        n_spots_4A=n_spots_4A,
        total_intensity=total_intensity,
        estimated_d_min=estimated_d_min,
        d_min_distl_method_1=d_min_distl_method_1,
        noisiness_method_1=noisiness_method_1,
        d_min_distl_method_2=d_min_distl_method_2,
        noisiness_method_2=noisiness_method_2,
    )
Пример #10
0
def stats_imageset(imageset, reflections, resolution_analysis=True, plot=False):
  n_spots_total = []
  n_spots_no_ice = []
  n_spots_4A = []
  total_intensity = []
  estimated_d_min = []
  d_min_distl_method_1 = []
  d_min_distl_method_2 = []
  noisiness_method_1 = []
  noisiness_method_2 = []

  image_number = reflections['xyzobs.px.value'].parts()[2]
  image_number = flex.floor(image_number)

  try:
    start, end = imageset.get_array_range()
  except AttributeError:
    start = 1
  for i in range(len(imageset)):
    stats = stats_single_image(
      imageset[i:i+1],
      reflections.select(image_number==i+start), i=i+start,
      resolution_analysis=resolution_analysis, plot=plot)
    n_spots_total.append(stats.n_spots_total)
    n_spots_no_ice.append(stats.n_spots_no_ice)
    n_spots_4A.append(stats.n_spots_4A)
    total_intensity.append(stats.total_intensity)
    estimated_d_min.append(stats.estimated_d_min)
    d_min_distl_method_1.append(stats.d_min_distl_method_1)
    noisiness_method_1.append(stats.noisiness_method_1)
    d_min_distl_method_2.append(stats.d_min_distl_method_2)
    noisiness_method_2.append(stats.noisiness_method_2)

  return group_args(n_spots_total=n_spots_total,
                    n_spots_no_ice=n_spots_no_ice,
                    n_spots_4A=n_spots_4A,
                    total_intensity=total_intensity,
                    estimated_d_min=estimated_d_min,
                    d_min_distl_method_1=d_min_distl_method_1,
                    noisiness_method_1=noisiness_method_1,
                    d_min_distl_method_2=d_min_distl_method_2,
                    noisiness_method_2=noisiness_method_2)
Пример #11
0
def export_mtz(
    integrated_data,
    experiment_list,
    hklout,
    ignore_panels=False,
    include_partials=False,
    keep_partials=False,
    min_isigi=None,
    force_static_model=False,
    filter_ice_rings=False,
):
    """Export data from integrated_data corresponding to experiment_list to an
  MTZ file hklout."""

    from dials.array_family import flex

    # for the moment assume (and assert) that we will convert data from exactly
    # one lattice...

    # FIXME allow for more than one experiment in here: this is fine just add
    # multiple MTZ data sets (DIALS1...DIALSN) and multiple batch headers: one
    # range of batches for each experiment

    assert len(experiment_list) == 1
    # select reflections that are assigned to an experiment (i.e. non-negative id)
    integrated_data = integrated_data.select(integrated_data["id"] >= 0)
    assert max(integrated_data["id"]) == 0

    # strip out negative variance reflections: these should not really be there
    # FIXME Doing select on summation results. Should do on profile result if
    # present? Yes

    if "intensity.prf.variance" in integrated_data:
        selection = integrated_data.get_flags(integrated_data.flags.integrated, all=True)
    else:
        selection = integrated_data.get_flags(integrated_data.flags.integrated_sum)
    integrated_data = integrated_data.select(selection)

    selection = integrated_data["intensity.sum.variance"] <= 0
    if selection.count(True) > 0:
        integrated_data.del_selected(selection)
        logger.info("Removing %d reflections with negative variance" % selection.count(True))

    if "intensity.prf.variance" in integrated_data:
        selection = integrated_data["intensity.prf.variance"] <= 0
        if selection.count(True) > 0:
            integrated_data.del_selected(selection)
            logger.info("Removing %d profile reflections with negative variance" % selection.count(True))

    if filter_ice_rings:
        selection = integrated_data.get_flags(integrated_data.flags.in_powder_ring)
        integrated_data.del_selected(selection)
        logger.info("Removing %d reflections in ice ring resolutions" % selection.count(True))

    if min_isigi is not None:

        selection = (
            integrated_data["intensity.sum.value"] / flex.sqrt(integrated_data["intensity.sum.variance"])
        ) < min_isigi
        integrated_data.del_selected(selection)
        logger.info("Removing %d reflections with I/Sig(I) < %s" % (selection.count(True), min_isigi))

        if "intensity.prf.variance" in integrated_data:
            selection = (
                integrated_data["intensity.prf.value"] / flex.sqrt(integrated_data["intensity.prf.variance"])
            ) < min_isigi
            integrated_data.del_selected(selection)
            logger.info("Removing %d profile reflections with I/Sig(I) < %s" % (selection.count(True), min_isigi))

    # FIXME in here work on including partial reflections => at this stage best
    # to split off the partial refections into a different selection & handle
    # gracefully... better to work on a short list as will need to "pop" them &
    # find matching parts to combine.

    if include_partials:
        integrated_data = sum_partial_reflections(integrated_data)
        integrated_data = scale_partial_reflections(integrated_data)

    if "partiality" in integrated_data:
        selection = integrated_data["partiality"] < 0.99
        if selection.count(True) > 0 and not keep_partials:
            integrated_data.del_selected(selection)
            logger.info("Removing %d incomplete reflections" % selection.count(True))

    # FIXME TODO for more than one experiment into an MTZ file:
    #
    # - add an epoch (or recover an epoch) from the scan and add this as an extra
    #   column to the MTZ file for scaling, so we know that the two lattices were
    #   integrated at the same time
    # - decide a sensible BATCH increment to apply to the BATCH value between
    #   experiments and add this
    #
    # At the moment this is probably enough to be working on.

    experiment = experiment_list[0]

    # also only work with one panel(for the moment)

    if not ignore_panels:
        assert len(experiment.detector) == 1

    from scitbx import matrix

    if experiment.goniometer:
        axis = matrix.col(experiment.goniometer.get_rotation_axis())
    else:
        axis = 0.0, 0.0, 0.0
    s0 = experiment.beam.get_s0()
    wavelength = experiment.beam.get_wavelength()

    panel = experiment.detector[0]
    origin = matrix.col(panel.get_origin())
    fast = matrix.col(panel.get_fast_axis())
    slow = matrix.col(panel.get_slow_axis())

    pixel_size = panel.get_pixel_size()

    fast *= pixel_size[0]
    slow *= pixel_size[1]

    cb_op_to_ref = experiment.crystal.get_space_group().info().change_of_basis_op_to_reference_setting()

    experiment.crystal = experiment.crystal.change_basis(cb_op_to_ref)

    U = experiment.crystal.get_U()
    if experiment.goniometer is not None:
        F = matrix.sqr(experiment.goniometer.get_fixed_rotation())
    else:
        F = matrix.sqr((1, 0, 0, 0, 1, 0, 0, 0, 1))
    unit_cell = experiment.crystal.get_unit_cell()

    from iotbx import mtz

    from scitbx.array_family import flex
    from math import floor, sqrt

    m = mtz.object()
    m.set_title("from dials.export_mtz")
    m.set_space_group_info(experiment.crystal.get_space_group().info())

    if experiment.scan:
        image_range = experiment.scan.get_image_range()
    else:
        image_range = 1, 1

    # pointless (at least) doesn't like batches starting from zero
    b_incr = max(image_range[0], 1)

    for b in range(image_range[0], image_range[1] + 1):
        o = m.add_batch().set_num(b + b_incr).set_nbsetid(1).set_ncryst(1)
        o.set_time1(0.0).set_time2(0.0).set_title("Batch %d" % (b + b_incr))
        o.set_ndet(1).set_theta(flex.float((0.0, 0.0))).set_lbmflg(0)
        o.set_alambd(wavelength).set_delamb(0.0).set_delcor(0.0)
        o.set_divhd(0.0).set_divvd(0.0)

        # FIXME hard-coded assumption on indealized beam vector below... this may be
        # broken when we come to process data from a non-imgCIF frame
        o.set_so(flex.float(s0)).set_source(flex.float((0, 0, -1)))

        # these are probably 0, 1 respectively, also flags for how many are set, sd
        o.set_bbfac(0.0).set_bscale(1.0)
        o.set_sdbfac(0.0).set_sdbscale(0.0).set_nbscal(0)

        # unit cell (this is fine) and the what-was-refined-flags FIXME hardcoded

        # take time-varying parameters from the *end of the frame* unlikely to
        # be much different at the end - however only exist if time-varying refinement
        # was used
        if not force_static_model and experiment.crystal.num_scan_points > 0:
            _unit_cell = experiment.crystal.get_unit_cell_at_scan_point(b - image_range[0])
            _U = experiment.crystal.get_U_at_scan_point(b - image_range[0])
        else:
            _unit_cell = unit_cell
            _U = U

        # apply the fixed rotation to this to unify matrix definitions - F * U
        # was what was used in the actual prediction: U appears to be stored
        # as the transpose?! At least is for Mosflm...
        #
        # FIXME Do we need to apply the setting rotation here somehow? i.e. we have
        # the U.B. matrix assuming that the axis is equal to S * axis_datum but
        # here we are just giving the effective axis so at scan angle 0 this will
        # not be correct... FIXME 2 not even sure we can express the stack of
        # matrices S * R * F * U * B in MTZ format?...
        _U = dials_u_to_mosflm(F * _U, _unit_cell)

        # FIXME need to get what was refined and what was constrained from the
        # crystal model
        o.set_cell(flex.float(_unit_cell.parameters()))
        o.set_lbcell(flex.int((-1, -1, -1, -1, -1, -1)))
        o.set_umat(flex.float(_U.transpose().elems))

        # get the mosaic spread though today it may not actually be set
        mosaic = experiment.crystal.get_mosaicity()
        o.set_crydat(flex.float([mosaic, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]))

        o.set_lcrflg(0)
        o.set_datum(flex.float((0.0, 0.0, 0.0)))

        # detector size, distance
        o.set_detlm(flex.float([0.0, panel.get_image_size()[0], 0.0, panel.get_image_size()[1], 0, 0, 0, 0]))
        o.set_dx(flex.float([panel.get_directed_distance(), 0.0]))

        # goniometer axes and names, and scan axis number, and number of axes, missets
        o.set_e1(flex.float(axis))
        o.set_e2(flex.float((0.0, 0.0, 0.0)))
        o.set_e3(flex.float((0.0, 0.0, 0.0)))
        o.set_gonlab(flex.std_string(("AXIS", "", "")))
        o.set_jsaxs(1)
        o.set_ngonax(1)
        o.set_phixyz(flex.float((0.0, 0.0, 0.0, 0.0, 0.0, 0.0)))

        # scan ranges, axis
        if experiment.scan:
            phi_start, phi_range = experiment.scan.get_image_oscillation(b)
        else:
            phi_start, phi_range = 0.0, 0.0
        o.set_phistt(phi_start)
        o.set_phirange(phi_range)
        o.set_phiend(phi_start + phi_range)
        o.set_scanax(flex.float(axis))

        # number of misorientation angles
        o.set_misflg(0)

        # crystal axis closest to rotation axis (why do I want this?)
        o.set_jumpax(0)

        # type of data - 1; 2D, 2; 3D, 3; Laue
        o.set_ldtype(2)

    # now create the actual data structures - first keep a track of the columns
    # H K L M/ISYM BATCH I SIGI IPR SIGIPR FRACTIONCALC XDET YDET ROT WIDTH
    # LP MPART FLAG BGPKRATIOS

    from cctbx.array_family import flex as cflex  # implicit import
    from cctbx.miller import map_to_asu_isym  # implicit import

    # gather the required information for the reflection file

    nref = len(integrated_data["miller_index"])
    x_px, y_px, z_px = integrated_data["xyzcal.px"].parts()

    xdet = flex.double(x_px)
    ydet = flex.double(y_px)
    zdet = flex.double(z_px)

    # compute ROT values
    if experiment.scan:
        rot = flex.double([experiment.scan.get_angle_from_image_index(z) for z in zdet])
    else:
        rot = zdet

    # compute BATCH values
    batch = flex.floor(zdet).iround() + 1 + b_incr

    # we're working with full reflections so...
    fractioncalc = flex.double(nref, 1.0)

    # now go for it and make an MTZ file...

    x = m.add_crystal("XTAL", "DIALS", unit_cell.parameters())
    d = x.add_dataset("FROMDIALS", wavelength)

    # now add column information...

    # FIXME add DIALS_FLAG which can include e.g. was partial etc.

    type_table = {
        "H": "H",
        "K": "H",
        "L": "H",
        "I": "J",
        "SIGI": "Q",
        "IPR": "J",
        "SIGIPR": "Q",
        "BG": "R",
        "SIGBG": "R",
        "XDET": "R",
        "YDET": "R",
        "BATCH": "B",
        "BGPKRATIOS": "R",
        "WIDTH": "R",
        "MPART": "I",
        "M_ISYM": "Y",
        "FLAG": "I",
        "LP": "R",
        "FRACTIONCALC": "R",
        "ROT": "R",
        "DQE": "R",
    }

    # derive index columns from original indices with
    #
    # from m.replace_original_index_miller_indices
    #
    # so all that is needed now is to make space for the reflections - fill with
    # zeros...

    m.adjust_column_array_sizes(nref)
    m.set_n_reflections(nref)

    # assign H, K, L, M_ISYM space
    for column in "H", "K", "L", "M_ISYM":
        d.add_column(column, type_table[column]).set_values(flex.double(nref, 0.0).as_float())

    m.replace_original_index_miller_indices(cb_op_to_ref.apply(integrated_data["miller_index"]))

    d.add_column("BATCH", type_table["BATCH"]).set_values(batch.as_double().as_float())

    if "lp" in integrated_data:
        lp = integrated_data["lp"]
    else:
        lp = flex.double(nref, 1.0)
    if "dqe" in integrated_data:
        dqe = integrated_data["dqe"]
    else:
        dqe = flex.double(nref, 1.0)
    I_profile = None
    V_profile = None
    I_sum = None
    V_sum = None
    # FIXME errors in e.g. LP correction need to be propogated here
    scl = lp / dqe
    if "intensity.prf.value" in integrated_data:
        I_profile = integrated_data["intensity.prf.value"] * scl
        V_profile = integrated_data["intensity.prf.variance"] * scl * scl
        # Trap negative variances
        assert V_profile.all_gt(0)
        d.add_column("IPR", type_table["I"]).set_values(I_profile.as_float())
        d.add_column("SIGIPR", type_table["SIGI"]).set_values(flex.sqrt(V_profile).as_float())
    if "intensity.sum.value" in integrated_data:
        I_sum = integrated_data["intensity.sum.value"] * scl
        V_sum = integrated_data["intensity.sum.variance"] * scl * scl
        # Trap negative variances
        assert V_sum.all_gt(0)
        d.add_column("I", type_table["I"]).set_values(I_sum.as_float())
        d.add_column("SIGI", type_table["SIGI"]).set_values(flex.sqrt(V_sum).as_float())
    if "background.sum.value" in integrated_data and "background.sum.variance" in integrated_data:
        bg = integrated_data["background.sum.value"]
        varbg = integrated_data["background.sum.variance"]
        assert (varbg >= 0).count(False) == 0
        sigbg = flex.sqrt(varbg)
        d.add_column("BG", type_table["BG"]).set_values(bg.as_float())
        d.add_column("SIGBG", type_table["SIGBG"]).set_values(sigbg.as_float())

    d.add_column("FRACTIONCALC", type_table["FRACTIONCALC"]).set_values(fractioncalc.as_float())

    d.add_column("XDET", type_table["XDET"]).set_values(xdet.as_float())
    d.add_column("YDET", type_table["YDET"]).set_values(ydet.as_float())
    d.add_column("ROT", type_table["ROT"]).set_values(rot.as_float())
    d.add_column("LP", type_table["LP"]).set_values(lp.as_float())
    d.add_column("DQE", type_table["DQE"]).set_values(dqe.as_float())

    m.write(hklout)

    return m
Пример #12
0
def _write_columns(mtz_file, dataset, integrated_data, scale_partials,
                   apply_scales):
    """Write the column definitions AND data for a single dataset."""

    # now create the actual data structures - first keep a track of the columns

    # H K L M/ISYM BATCH I SIGI IPR SIGIPR FRACTIONCALC XDET YDET ROT WIDTH
    # LP MPART FLAG BGPKRATIOS

    # gather the required information for the reflection file

    nref = len(integrated_data['miller_index'])

    # check reflections remain
    if nref == 0:
        raise Sorry('no reflections for export')

    xdet, ydet, zdet = [
        flex.double(x) for x in integrated_data['xyzobs.px.value'].parts()
    ]

    # compute BATCH values - floor() to get (fortran) image captured within
    #                        +1     because FORTRAN counting; zdet+1=image_index
    #                        +off   because            image_index+o=batch
    batch = (flex.floor(zdet).iround() + 1) + integrated_data["batch_offset"]

    # we're working with full reflections so... #388 no longer guaranteed
    if scale_partials:
        fractioncalc = flex.double(nref, 1.0)
    else:
        fractioncalc = integrated_data['partiality']

    # now add column information...

    # FIXME add DIALS_FLAG which can include e.g. was partial etc.

    type_table = {
        'H': 'H',
        'K': 'H',
        'L': 'H',
        'I': 'J',
        'SIGI': 'Q',
        'IPR': 'J',
        'SIGIPR': 'Q',
        'BG': 'R',
        'SIGBG': 'R',
        'XDET': 'R',
        'YDET': 'R',
        'BATCH': 'B',
        'BGPKRATIOS': 'R',
        'WIDTH': 'R',
        'MPART': 'I',
        'M_ISYM': 'Y',
        'FLAG': 'I',
        'LP': 'R',
        'FRACTIONCALC': 'R',
        'ROT': 'R',
        'QE': 'R',
    }

    # derive index columns from original indices with
    #
    # from m.replace_original_index_miller_indices
    #
    # so all that is needed now is to make space for the reflections - fill with
    # zeros...

    mtz_file.adjust_column_array_sizes(nref)
    mtz_file.set_n_reflections(nref)

    # assign H, K, L, M_ISYM space
    for column in 'H', 'K', 'L', 'M_ISYM':
        dataset.add_column(column, type_table[column]).set_values(
            flex.double(nref, 0.0).as_float())

    mtz_file.replace_original_index_miller_indices(
        integrated_data['miller_index_rebase'])

    dataset.add_column('BATCH', type_table['BATCH']).set_values(
        batch.as_double().as_float())

    if 'lp' in integrated_data:
        lp = integrated_data['lp']
    else:
        lp = flex.double(nref, 1.0)
    if 'qe' in integrated_data:
        qe = integrated_data['qe']
    elif 'dqe' in integrated_data:
        qe = integrated_data['dqe']
    else:
        qe = flex.double(nref, 1.0)
    I_profile = None
    V_profile = None
    I_sum = None
    V_sum = None
    # FIXME errors in e.g. LP correction need to be propagated here
    scl = lp / qe

    if apply_scales:
        scl = scl / integrated_data['inverse_scale_factor']

    if 'intensity.prf.value' in integrated_data:
        I_profile = integrated_data['intensity.prf.value'] * scl
        V_profile = integrated_data['intensity.prf.variance'] * scl * scl
        # Trap negative variances
        assert V_profile.all_gt(0)
        dataset.add_column('IPR',
                           type_table['I']).set_values(I_profile.as_float())
        dataset.add_column('SIGIPR', type_table['SIGI']).set_values(
            flex.sqrt(V_profile).as_float())
    if 'intensity.sum.value' in integrated_data:
        I_sum = integrated_data['intensity.sum.value'] * scl
        V_sum = integrated_data['intensity.sum.variance'] * scl * scl
        # Trap negative variances
        assert V_sum.all_gt(0)
        dataset.add_column('I', type_table['I']).set_values(I_sum.as_float())
        dataset.add_column('SIGI', type_table['SIGI']).set_values(
            flex.sqrt(V_sum).as_float())
    if ('background.sum.value' in integrated_data
            and 'background.sum.variance' in integrated_data):
        bg = integrated_data['background.sum.value']
        varbg = integrated_data['background.sum.variance']
        assert (varbg >= 0).count(False) == 0
        sigbg = flex.sqrt(varbg)
        dataset.add_column('BG', type_table['BG']).set_values(bg.as_float())
        dataset.add_column('SIGBG',
                           type_table['SIGBG']).set_values(sigbg.as_float())

    dataset.add_column('FRACTIONCALC', type_table['FRACTIONCALC']).set_values(
        fractioncalc.as_float())

    dataset.add_column('XDET', type_table['XDET']).set_values(xdet.as_float())
    dataset.add_column('YDET', type_table['YDET']).set_values(ydet.as_float())
    dataset.add_column('ROT', type_table['ROT']).set_values(
        integrated_data["ROT"].as_float())
    dataset.add_column('LP', type_table['LP']).set_values(lp.as_float())
    dataset.add_column('QE', type_table['QE']).set_values(qe.as_float())
Пример #13
0
def glm2(y):
    from math import sqrt, exp, floor, log
    from scipy.stats import poisson
    from scitbx import matrix
    from dials.array_family import flex

    y = flex.double(y)

    x = flex.double([1.0 for yy in y])
    w = flex.double([1.0 for yy in y])

    X = matrix.rec(x, (len(x), 1))

    c = 1.345

    beta = matrix.col([0])

    maxiter = 10
    accuracy = 1e-3

    for iter in range(maxiter):

        ni = flex.double([1.0 for xx in x])
        sni = flex.sqrt(ni)

        eta = flex.double(X * beta)

        mu = flex.exp(eta)
        dmu_deta = flex.exp(eta)

        Vmu = mu
        sVF = flex.sqrt(Vmu)
        residP = (y - mu) * sni / sVF

        phi = 1
        sV = sVF * sqrt(phi)
        residPS = residP / sqrt(phi)

        H = flex.floor(mu * ni - c * sni * sV)
        K = flex.floor(mu * ni + c * sni * sV)
        # print min(H)
        dpH = flex.double([poisson(mui).pmf(Hi) for mui, Hi in zip(mu, H)])
        dpH1 = flex.double(
            [poisson(mui).pmf(Hi - 1) for mui, Hi in zip(mu, H)])
        dpK = flex.double([poisson(mui).pmf(Ki) for mui, Ki in zip(mu, K)])
        dpK1 = flex.double(
            [poisson(mui).pmf(Ki - 1) for mui, Ki in zip(mu, K)])
        pHm1 = flex.double(
            [poisson(mui).cdf(Hi - 1) for mui, Hi in zip(mu, H)])
        pKm1 = flex.double(
            [poisson(mui).cdf(Ki - 1) for mui, Ki in zip(mu, K)])
        pH = pHm1 + dpH  # = ppois(H,*)
        pK = pKm1 + dpK  # = ppois(K,*)
        E2f = mu * (dpH1 - dpH - dpK1 + dpK) + pKm1 - pHm1
        Epsi = c * (1.0 - pK - pH) + (mu / sV) * (dpH - dpK)
        Epsi2 = c * c * (pH + 1.0 - pK) + E2f
        EpsiS = c * (dpH + dpK) + E2f / sV

        psi = flex.double([huber(rr, c) for rr in residPS])
        cpsi = psi - Epsi
        temp = cpsi * w * sni / sV * dmu_deta
        EEqMat = [0] * len(X)
        for j in range(X.n_rows()):
            for i in range(X.n_columns()):
                k = i + j * X.n_columns()
                EEqMat[k] = X[k] * temp[j]
        EEqMat = matrix.rec(EEqMat, (X.n_rows(), X.n_columns()))
        EEq = []
        for i in range(EEqMat.n_columns()):
            col = []
            for j in range(EEqMat.n_rows()):
                k = i + j * EEqMat.n_columns()
                col.append(EEqMat[k])
            EEq.append(sum(col) / len(col))
        EEq = matrix.col(EEq)
        DiagB = EpsiS / (sni * sV) * w * (ni * dmu_deta)**2
        B = matrix.diag(DiagB)
        H = (X.transpose() * B * X) / len(y)

        dbeta = H.inverse() * EEq
        beta_new = beta + dbeta

        relE = sqrt(
            sum([d * d for d in dbeta]) / max(1e-10, sum([d * d
                                                          for d in beta])))
        beta = beta_new

        # print relE
        if relE < accuracy:
            break

    weights = [min(1, c / abs(r)) for r in residPS]

    eta = flex.double(X * beta)

    mu = flex.exp(eta)
    return beta
Пример #14
0
def glm2(y):
    from math import sqrt, exp, floor, log
    from scipy.stats import poisson
    from scitbx import matrix
    from dials.array_family import flex

    y = flex.double(y)

    x = flex.double([1.0 for yy in y])
    w = flex.double([1.0 for yy in y])

    X = matrix.rec(x, (len(x), 1))

    c = 1.345

    beta = matrix.col([0])

    maxiter = 10
    accuracy = 1e-3

    for iter in range(maxiter):

        ni = flex.double([1.0 for xx in x])
        sni = flex.sqrt(ni)

        eta = flex.double(X * beta)

        mu = flex.exp(eta)
        dmu_deta = flex.exp(eta)

        Vmu = mu
        sVF = flex.sqrt(Vmu)
        residP = (y - mu) * sni / sVF

        phi = 1
        sV = sVF * sqrt(phi)
        residPS = residP / sqrt(phi)

        H = flex.floor(mu * ni - c * sni * sV)
        K = flex.floor(mu * ni + c * sni * sV)
        # print min(H)
        dpH = flex.double([poisson(mui).pmf(Hi) for mui, Hi in zip(mu, H)])
        dpH1 = flex.double([poisson(mui).pmf(Hi - 1) for mui, Hi in zip(mu, H)])
        dpK = flex.double([poisson(mui).pmf(Ki) for mui, Ki in zip(mu, K)])
        dpK1 = flex.double([poisson(mui).pmf(Ki - 1) for mui, Ki in zip(mu, K)])
        pHm1 = flex.double([poisson(mui).cdf(Hi - 1) for mui, Hi in zip(mu, H)])
        pKm1 = flex.double([poisson(mui).cdf(Ki - 1) for mui, Ki in zip(mu, K)])
        pH = pHm1 + dpH  # = ppois(H,*)
        pK = pKm1 + dpK  # = ppois(K,*)
        E2f = mu * (dpH1 - dpH - dpK1 + dpK) + pKm1 - pHm1
        Epsi = c * (1.0 - pK - pH) + (mu / sV) * (dpH - dpK)
        Epsi2 = c * c * (pH + 1.0 - pK) + E2f
        EpsiS = c * (dpH + dpK) + E2f / sV

        psi = flex.double([huber(rr, c) for rr in residPS])
        cpsi = psi - Epsi
        temp = cpsi * w * sni / sV * dmu_deta
        EEqMat = [0] * len(X)
        for j in range(X.n_rows()):
            for i in range(X.n_columns()):
                k = i + j * X.n_columns()
                EEqMat[k] = X[k] * temp[j]
        EEqMat = matrix.rec(EEqMat, (X.n_rows(), X.n_columns()))
        EEq = []
        for i in range(EEqMat.n_columns()):
            col = []
            for j in range(EEqMat.n_rows()):
                k = i + j * EEqMat.n_columns()
                col.append(EEqMat[k])
            EEq.append(sum(col) / len(col))
        EEq = matrix.col(EEq)
        DiagB = EpsiS / (sni * sV) * w * (ni * dmu_deta) ** 2
        B = matrix.diag(DiagB)
        H = (X.transpose() * B * X) / len(y)

        dbeta = H.inverse() * EEq
        beta_new = beta + dbeta

        relE = sqrt(sum([d * d for d in dbeta]) / max(1e-10, sum([d * d for d in beta])))
        beta = beta_new

        # print relE
        if relE < accuracy:
            break

    weights = [min(1, c / abs(r)) for r in residPS]

    eta = flex.double(X * beta)

    mu = flex.exp(eta)
    return beta
Пример #15
0
def run(args):

    from dials.util.options import OptionParser
    from dials.util.options import flatten_experiments
    from dials.util.options import flatten_reflections
    import libtbx.load_env

    usage = "%s [options] experiments.json | integrated.pickle" % (
        libtbx.env.dispatcher_name)

    parser = OptionParser(usage=usage,
                          phil=phil_scope,
                          read_experiments=True,
                          read_reflections=True,
                          check_format=False,
                          epilog=help_message)

    params, options = parser.parse_args(show_diff_phil=True)
    experiments = flatten_experiments(params.input.experiments)
    reflections = flatten_reflections(params.input.reflections)

    if len(experiments) == 0 or len(reflections) == 0:
        parser.print_help()
        exit()
    reflections = reflections[0]
    cryst = experiments.crystals()[0]
    unit_cell = cryst.get_unit_cell()
    if params.space_group is not None:
        space_group = params.space_group.group()
        assert space_group.is_compatible_unit_cell(unit_cell), unit_cell
    else:
        space_group = cryst.get_space_group()
    print space_group.info()
    print unit_cell

    expt = experiments[0]
    from cctbx import miller, crystal
    from mmtbx.scaling.data_statistics import wilson_scaling
    sel = reflections.get_flags(reflections.flags.integrated_sum)
    reflections = reflections.select(sel)
    cs = crystal.symmetry(unit_cell=unit_cell, space_group=space_group)
    ms = miller.set(cs,
                    indices=reflections['miller_index'],
                    anomalous_flag=True)
    intensities = miller.array(ms,
                               data=reflections['intensity.sum.value'],
                               sigmas=flex.sqrt(
                                   reflections['intensity.sum.variance']))
    intensities.set_observation_type_xray_intensity()
    d_star_sq = intensities.d_star_sq().data()
    n_bins = 20
    #  binner = intensities.setup_binner_d_star_sq_step(
    #    d_star_sq_step=(flex.max(d_star_sq)-flex.min(d_star_sq)+1e-8)/n_bins)
    binner = intensities.setup_binner_counting_sorted(n_bins=n_bins)
    # wilson = intensities.wilson_plot(use_binning=True)
    # wilson.show()
    # from matplotlib import pyplot
    # pyplot.figure()
    # pyplot.scatter(wilson.binner.bin_centers(2), wilson.data[1:-1])
    # pyplot.show()
    intensities = intensities.merge_equivalents().array()
    wilson = wilson_scaling(intensities, n_residues=200)
    wilson.iso_scale_and_b.show()

    from matplotlib import pyplot
    pyplot.figure()
    pyplot.scatter(wilson.d_star_sq, wilson.mean_I_obs_data, label='Data')
    pyplot.plot(wilson.d_star_sq, wilson.mean_I_obs_theory, label='theory')
    pyplot.plot(wilson.d_star_sq,
                wilson.mean_I_normalisation,
                label='smoothed')
    pyplot.yscale('log')
    pyplot.legend()
    pyplot.show()

    import copy
    import math
    # Hack to make the predicter predict reflections outside of the range
    # of the scan
    expt_input = copy.deepcopy(expt)
    scan = expt.scan
    image_range = scan.get_image_range()
    oscillation = scan.get_oscillation()
    scan.set_image_range((1, int(math.ceil(360 / oscillation[1]))))
    scan.set_oscillation((0, oscillation[1]))
    print scan

    # Populate the reflection table with predictions
    predicted = flex.reflection_table.from_predictions(
        expt, force_static=params.force_static, dmin=params.d_min)
    predicted['id'] = flex.int(len(predicted), 0)

    print len(predicted)

    space_group = space_group.build_derived_reflection_intensity_group(
        anomalous_flag=True)
    cs = crystal.symmetry(unit_cell=unit_cell, space_group=space_group)

    ms = miller.set(cs, indices=predicted['miller_index'], anomalous_flag=True)
    ma = miller.array(ms,
                      data=flex.double(ms.size(), 1),
                      sigmas=flex.double(ms.size(), 1))

    d_star_sq = ma.d_star_sq().data()
    n_bins = 1
    binner = ma.setup_binner_d_star_sq_step(
        d_star_sq_step=(flex.max(d_star_sq) - flex.min(d_star_sq) + 1e-8) /
        n_bins)
    image_number = predicted['xyzcal.px'].parts()[2]
    print flex.min(image_number)
    print flex.max(image_number)
    #dose = flex.size_t(list(flex.floor(image_number).iround()))
    angle_deg = predicted['xyzcal.mm'].parts()[2] * 180 / math.pi
    dose = flex.size_t(list(flex.floor(angle_deg).iround()))
    range_width = 1
    range_min = flex.min(dose) - range_width
    range_max = flex.max(dose)
    n_steps = 2 + int((range_max - range_min) - range_width)

    binner_non_anom = ma.as_non_anomalous_array().use_binning(binner)
    n_complete = flex.size_t(binner_non_anom.counts_complete()[1:-1])

    ranges_dict = {}
    completeness_levels = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99]
    for c in completeness_levels:
        ranges_dict[c] = []
    from xia2.Modules.PyChef2 import ChefStatistics
    step = 1
    for i in range(0, 360, step):
        sel = dose < step
        dose.set_selected(sel, dose.select(sel) + 360)
        dose -= flex.min(dose)
        chef_stats = ChefStatistics(ma.indices(), ma.data(), ma.sigmas(),
                                    ma.d_star_sq().data(), dose, n_complete,
                                    binner, ma.space_group(),
                                    ma.anomalous_flag(), n_steps)

        ieither_completeness = chef_stats.ieither_completeness()
        iboth_completeness = chef_stats.iboth_completeness()

        for c in completeness_levels:
            ranges_dict[c].append(
                min((ieither_completeness > (c / 100)).iselection()))

    from matplotlib import pyplot
    pyplot.figure()
    for c in completeness_levels:
        pyplot.plot(ranges_dict[c], label=str(c))


#  pyplot.plot(range_for_50)
#  pyplot.plot(range_for_99)

#  pyplot.scatter(range(iboth_completeness.size()), iboth_completeness)
    pyplot.legend()
    pyplot.show()
Пример #16
0
def run(args):
    from dials.util.options import OptionParser
    import libtbx.load_env

    usage = "%s [options] stars.pickle" % (
        libtbx.env.dispatcher_name)

    parser = OptionParser(
        usage=usage,
        phil=phil_scope)

    params, options, args = parser.parse_args(show_diff_phil=True,
                                              return_unhandled=True)

    from dials.array_family import flex
    import cPickle as pickle
    from astrotbx.algorithms.match import matcher, pair_up, compute_Rt

    stars = None

    for arg in args:
        tmp_stars = pickle.load(open(arg))
        if not stars:
            stars = tmp_stars
        else:
            stars.extend(tmp_stars)

    z = flex.floor(stars['xyzobs.px.value'].parts()[2]).iround()

    zs = sorted(set(z))

    Rtds = []
    Rtds.append({'R': (1, 0, 0, 1), 't': (0, 0), 'd': 0, 'n': 0, 'dt': 0})

    from scitbx import matrix
    import math

    datum0 = stars.select(z == zs[0])

    for j in range(len(zs) - 1):
        _r = zs[j]
        _z = zs[j + 1]

        datum = stars.select(z == _r)
        move = stars.select(z == _z)

        dt = move['timestamp'][0]

        # get the moves for this step
        R, t, d, n = matcher(datum, move, params)

        # compose with previous to map back to datum i.e. 0-th image positions
        _R, _t = matrix.sqr(Rtds[-1]['R']), matrix.col(Rtds[-1]['t'])
        Rc = matrix.sqr(R) * _R
        tc = matrix.sqr(R) * _t + matrix.col(t)

        # refine w.r.t. datum positions... seems to drift
        rsel, msel = pair_up(datum0, move, params, Rc, tc)

        R1, t1, d1, n1 = compute_Rt(datum0.select(rsel), move.select(msel))

        # now use this stack to match up with the datum stars i.e. apply to star
        # positions, match then use that iselection to derive the full Rt =>
        # will involve refactor... N.B. need to do outlier rejection after matching
        # but before mapping back / Rt calculation.

        # the re-compute the full Rt from datum to this time point

        Rtds.append({'R': R1.elems, 't': t1, 'd': d1, 'n': n1, 'dt': dt})

    for j, Rtd in enumerate(Rtds):
        print('%3d %.4f %3d %4d' % (j, Rtd['d'], Rtd['n'], Rtd['dt']))

    import json
    json.dump(Rtds, open(params.output, 'w'))