def test02(self): # Test float/float version omega = 2 gain_omega = 0.01 mu = 0.5 gain_mu = 0.01 omega_rel_lim = 0.001 self.test = digital_swig.clock_recovery_mm_ff(omega, gain_omega, mu, gain_mu, omega_rel_lim) data = 100 * [1] self.src = gr.vector_source_f(data, False) self.snk = gr.vector_sink_f() self.tb.connect(self.src, self.test, self.snk) self.tb.run() expected_result = 100 * [0.99972] # doesn't quite get to 1.0 dst_data = self.snk.data() # Only compare last Ncmp samples Ncmp = 30 len_e = len(expected_result) len_d = len(dst_data) expected_result = expected_result[len_e - Ncmp :] dst_data = dst_data[len_d - Ncmp :] # print expected_result # print dst_data self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5)
def test02(self): # Test float/float version omega = 2 gain_omega = 0.01 mu = 0.5 gain_mu = 0.01 omega_rel_lim = 0.001 self.test = digital.clock_recovery_mm_ff(omega, gain_omega, mu, gain_mu, omega_rel_lim) data = 100*[1,] self.src = blocks.vector_source_f(data, False) self.snk = blocks.vector_sink_f() self.tb.connect(self.src, self.test, self.snk) self.tb.run() expected_result = 100*[0.99972, ] # doesn't quite get to 1.0 dst_data = self.snk.data() # Only compare last Ncmp samples Ncmp = 30 len_e = len(expected_result) len_d = len(dst_data) expected_result = expected_result[len_e - Ncmp:] dst_data = dst_data[len_d - Ncmp:] #print expected_result #print dst_data self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5)
def test04(self): # Test float/float version omega = 2 gain_omega = 0.01 mu = 0.25 gain_mu = 0.1 omega_rel_lim = 0.001 self.test = digital.clock_recovery_mm_ff(omega, gain_omega, mu, gain_mu, omega_rel_lim) data = 1000*[1, 1, -1, -1] self.src = blocks.vector_source_f(data, False) self.snk = blocks.vector_sink_f() self.tb.connect(self.src, self.test, self.snk) self.tb.run() expected_result = 1000*[-1.31, 1.31] dst_data = self.snk.data() # Only compare last Ncmp samples Ncmp = 100 len_e = len(expected_result) len_d = len(dst_data) expected_result = expected_result[len_e - Ncmp:] dst_data = dst_data[len_d - Ncmp:] #print expected_result #print dst_data self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 1)
def __init__(self, samples_per_symbol=_def_samples_per_symbol, gain_mu=_def_gain_mu, mu=_def_mu, omega_relative_limit=_def_omega_relative_limit, freq_error=_def_freq_error, verbose=_def_verbose, log=_def_log): gr.hier_block2.__init__( self, "gmsk_demod", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(1, 1, gr.sizeof_char)) # Output signature self._samples_per_symbol = samples_per_symbol self._gain_mu = gain_mu self._mu = mu self._omega_relative_limit = omega_relative_limit self._freq_error = freq_error self._differential = False if samples_per_symbol < 2: raise TypeError, "samples_per_symbol >= 2, is %f" % samples_per_symbol self._omega = samples_per_symbol * (1 + self._freq_error) if not self._gain_mu: self._gain_mu = 0.175 self._gain_omega = .25 * self._gain_mu * self._gain_mu # critically damped # Demodulate FM sensitivity = (pi / 2) / samples_per_symbol self.fmdemod = analog.quadrature_demod_cf(1.0 / sensitivity) # the clock recovery block tracks the symbol clock and resamples as needed. # the output of the block is a stream of soft symbols (float) self.clock_recovery = digital.clock_recovery_mm_ff( self._omega, self._gain_omega, self._mu, self._gain_mu, self._omega_relative_limit) # slice the floats at 0, outputting 1 bit (the LSB of the output byte) per sample self.slicer = digital.binary_slicer_fb() if verbose: self._print_verbage() if log: self._setup_logging() # Connect & Initialize base class self.connect(self, self.fmdemod, self.clock_recovery, self.slicer, self)
def __init__(self, samples_per_symbol=_def_samples_per_symbol, gain_mu=_def_gain_mu, mu=_def_mu, omega_relative_limit=_def_omega_relative_limit, freq_error=_def_freq_error, verbose=_def_verbose, log=_def_log): gr.hier_block2.__init__(self, "gmsk_demod", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(1, 1, gr.sizeof_char)) # Output signature self._samples_per_symbol = samples_per_symbol self._gain_mu = gain_mu self._mu = mu self._omega_relative_limit = omega_relative_limit self._freq_error = freq_error self._differential = False if samples_per_symbol < 2: raise TypeError, "samples_per_symbol >= 2, is %f" % samples_per_symbol self._omega = samples_per_symbol*(1+self._freq_error) if not self._gain_mu: self._gain_mu = 0.175 self._gain_omega = .25 * self._gain_mu * self._gain_mu # critically damped # Demodulate FM sensitivity = (pi / 2) / samples_per_symbol self.fmdemod = analog.quadrature_demod_cf(1.0 / sensitivity) # the clock recovery block tracks the symbol clock and resamples as needed. # the output of the block is a stream of soft symbols (float) self.clock_recovery = digital.clock_recovery_mm_ff(self._omega, self._gain_omega, self._mu, self._gain_mu, self._omega_relative_limit) # slice the floats at 0, outputting 1 bit (the LSB of the output byte) per sample self.slicer = digital.binary_slicer_fb() if verbose: self._print_verbage() if log: self._setup_logging() # Connect & Initialize base class self.connect(self, self.fmdemod, self.clock_recovery, self.slicer, self)
def __init__(self, samples_per_symbol=_def_samples_per_symbol, sensitivity=_def_sensitivity, gain_mu=_def_gain_mu, mu=_def_mu, omega_relative_limit=_def_omega_relative_limit, freq_error=_def_freq_error, verbose=_def_verbose, log=_def_log): """ Hierarchical block for Gaussian Minimum Shift Key (GFSK) demodulation. The input is the complex modulated signal at baseband. The output is a stream of bits packed 1 bit per byte (the LSB) @param samples_per_symbol: samples per baud @type samples_per_symbol: integer @param verbose: Print information about modulator? @type verbose: bool @param log: Print modualtion data to files? @type log: bool Clock recovery parameters. These all have reasonble defaults. @param gain_mu: controls rate of mu adjustment @type gain_mu: float @param mu: fractional delay [0.0, 1.0] @type mu: float @param omega_relative_limit: sets max variation in omega @type omega_relative_limit: float, typically 0.000200 (200 ppm) @param freq_error: bit rate error as a fraction @param float """ gr.hier_block2.__init__(self, "gfsk_demod", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(1, 1, gr.sizeof_char)) # Output signature self._samples_per_symbol = samples_per_symbol self._gain_mu = gain_mu self._mu = mu self._omega_relative_limit = omega_relative_limit self._freq_error = freq_error self._differential = False if samples_per_symbol < 2: raise TypeError, "samples_per_symbol >= 2, is %f" % samples_per_symbol self._omega = samples_per_symbol*(1+self._freq_error) if not self._gain_mu: self._gain_mu = 0.175 self._gain_omega = .25 * self._gain_mu * self._gain_mu # critically damped # Demodulate FM #sensitivity = (pi / 2) / samples_per_symbol self.fmdemod = gr.quadrature_demod_cf(1.0 / sensitivity) # the clock recovery block tracks the symbol clock and resamples as needed. # the output of the block is a stream of soft symbols (float) self.clock_recovery = digital.clock_recovery_mm_ff(self._omega, self._gain_omega, self._mu, self._gain_mu, self._omega_relative_limit) # slice the floats at 0, outputting 1 bit (the LSB of the output byte) per sample self.slicer = digital.binary_slicer_fb() if verbose: self._print_verbage() if log: self._setup_logging() # Connect & Initialize base class self.connect(self, self.fmdemod, self.clock_recovery, self.slicer, self)