Пример #1
0
    def test_unembed_response_with_discard_matrix_typical(self):
        h = {'a': .1, 'b': 0, 'c': 0}
        J = {('a', 'b'): 1, ('b', 'c'): 1.3, ('a', 'c'): -1}
        bqm = dimod.BinaryQuadraticModel.from_ising(h, J, offset=1.3)

        embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}

        embedded_bqm = dimod.embed_bqm(bqm,
                                       embedding,
                                       nx.cycle_graph(4),
                                       chain_strength=1)

        embedded_response = dimod.ExactSolver().sample(embedded_bqm)

        chain_break_method = dimod.embedding.discard
        response = dimod.unembed_response(
            embedded_response,
            embedding,
            bqm,
            chain_break_method=dimod.embedding.discard)

        self.assertEqual(len(embedded_response) / 2,
                         len(response))  # half chains should be broken

        for sample, energy in response.data(['sample', 'energy']):
            self.assertEqual(bqm.energy(sample), energy)
Пример #2
0
    def test_embed_bqm_BINARY(self):
        Q = {
            ('a', 'a'): 0,
            ('a', 'b'): -1,
            ('b', 'b'): 0,
            ('c', 'c'): 0,
            ('b', 'c'): -1
        }
        bqm = dimod.BinaryQuadraticModel.from_qubo(Q)

        embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}

        embedded_bqm = dimod.embed_bqm(bqm,
                                       embedding,
                                       nx.cycle_graph(4),
                                       chain_strength=1)

        # check that the energy has been preserved
        for config in itertools.product((0, 1), repeat=3):
            sample = dict(zip(('a', 'b', 'c'), config))
            target_sample = {
                u: sample[v]
                for v, chain in embedding.items() for u in chain
            }  # no chains broken
            self.assertAlmostEqual(bqm.energy(sample),
                                   embedded_bqm.energy(target_sample))
Пример #3
0
    def test_embed_bqm_empty(self):
        bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN)

        embedded_bqm = dimod.embed_bqm(bqm, {}, {})

        self.assertIsInstance(embedded_bqm, dimod.BinaryQuadraticModel)
        self.assertFalse(embedded_bqm)  # should be empty
Пример #4
0
    def sample(self, bqm, chain_strength=1.0, chain_break_fraction=True, **parameters):
        """Sample from the provided binary quadratic model.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            chain_strength (float, optional, default=1.0):
                Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
                chains. Note that the energy penalty of chain breaks is 2 * `chain_strength`.

            chain_break_fraction (bool, optional, default=True):
                If True, a ‘chain_break_fraction’ field is added to the unembedded response which report
                what fraction of the chains were broken before unembedding.

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :class:`dimod.Response`

        Examples:
            This example uses :class:`.FixedEmbeddingComposite` to instantiate a composed sampler
            that submits an unstructured Ising problem to a D-Wave solver, selected by the user's
            default
            :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>`,
            while minor-embedding the problem's variables to physical qubits on the solver.

            >>> from dwave.system.samplers import DWaveSampler
            >>> from dwave.system.composites import FixedEmbeddingComposite
            >>> import dimod
            >>> sampler = FixedEmbeddingComposite(DWaveSampler(), {'a': [0, 4], 'b': [1, 5], 'c': [2, 6]})
            >>> resp = sampler.sample_ising({'a': .5, 'c': 0}, {('a', 'c'): -1})

        See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
        for explanations of technical terms in descriptions of Ocean tools.

        """

        # solve the problem on the child system
        child = self.child

        # apply the embedding to the given problem to map it to the child sampler
        __, __, target_adjacency = child.structure

        # get the embedding
        embedding = self.embedding

        bqm_embedded = dimod.embed_bqm(bqm, embedding, target_adjacency, chain_strength=chain_strength)

        if 'initial_state' in parameters:
            parameters['initial_state'] = _embed_state(embedding, parameters['initial_state'])

        response = child.sample(bqm_embedded, **parameters)

        return dimod.unembed_response(response, embedding, source_bqm=bqm,
                                      chain_break_fraction=chain_break_fraction)
Пример #5
0
    def test_embed_bqm_identity(self):

        bqm = dimod.BinaryQuadraticModel({'a': -1}, {(0, 1): .5, (1, 'a'): -1.}, 1.0, dimod.BINARY)

        embedding = {v: {v} for v in bqm.linear}  # identity embedding
        target_adj = bqm.to_networkx_graph()  # identity target graph

        embedded_bqm = dimod.embed_bqm(bqm, embedding, target_adj)

        self.assertEqual(bqm, embedded_bqm)
Пример #6
0
    def test_embedding_with_extra_chains(self):
        embedding = {0: [0, 1], 1: [2], 2: [3]}
        G = nx.cycle_graph(4)

        bqm = dimod.BinaryQuadraticModel.from_qubo({(0, 0): 1})

        target_bqm = dimod.embed_bqm(bqm, embedding, G)

        for v in itertools.chain(*embedding.values()):
            self.assertIn(v, target_bqm)
Пример #7
0
    def test_embed_bqm_subclass_propagation(self):
        class MyBQM(dimod.BinaryQuadraticModel):
            pass

        bqm = MyBQM.empty(dimod.BINARY)

        embedded_bqm = dimod.embed_bqm(bqm, {}, {})

        self.assertIsInstance(embedded_bqm, dimod.BinaryQuadraticModel)
        self.assertIsInstance(embedded_bqm, MyBQM)
        self.assertFalse(embedded_bqm)  # should be empty
Пример #8
0
    def test_energies_functional(self):
        h = {'a': .1, 'b': 0, 'c': 0}
        J = {('a', 'b'): 1, ('b', 'c'): 1.3, ('a', 'c'): -1}
        bqm = dimod.BinaryQuadraticModel.from_ising(h, J, offset=1.3)

        embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}

        embedded_bqm = dimod.embed_bqm(bqm, embedding, nx.cycle_graph(4), chain_strength=1)

        embedded_response = dimod.ExactSolver().sample(embedded_bqm)

        response = dimod.unembed_response(embedded_response, embedding, bqm)

        for sample, energy in response.data(['sample', 'energy']):
            self.assertEqual(bqm.energy(sample), energy)
Пример #9
0
    def sample(self, bqm, chain_strength=1.0, **parameters):
        """Sample from the provided binary quadratic model.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            chain_strength (float, optional, default=1.0):
                Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
                chains. Note that the energy penalty of chain breaks is 2 * `chain_strength`.

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :class:`dimod.Response`

        Examples:
            This example uses :class:`.FixedEmbeddingComposite` to instantiate a composed sampler
            that submits an unstructured Ising problem to a D-Wave solver, selected by the user's
            default D-Wave Cloud Client configuration_ file, while minor-embedding the problem's
            variables to physical qubits on the solver.

            >>> from dwave.system.samplers import DWaveSampler
            >>> from dwave.system.composites import FixedEmbeddingComposite
            >>> import dimod
            >>> sampler = FixedEmbeddingComposite(DWaveSampler(), {'a': [0, 4], 'b': [1, 5], 'c': [2, 6]})
            >>> resp = sampler.sample_ising({'a': .5, 'c': 0}, {('a', 'c'): -1})

        """

        # solve the problem on the child system
        child = self.child

        # apply the embedding to the given problem to map it to the child sampler
        __, __, target_adjacency = child.structure

        # get the embedding
        embedding = self._embedding

        bqm_embedded = dimod.embed_bqm(bqm,
                                       embedding,
                                       target_adjacency,
                                       chain_strength=chain_strength)

        response = child.sample(bqm_embedded, **parameters)

        return dimod.unembed_response(response, embedding, source_bqm=bqm)
Пример #10
0
    def test_embed_bqm_NAE3SAT_to_square(self):

        h = {'a': 0, 'b': 0, 'c': 0}
        J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}

        bqm = dimod.BinaryQuadraticModel.from_ising(h, J)

        embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}

        embedded_bqm = dimod.embed_bqm(bqm,
                                       embedding,
                                       nx.cycle_graph(4),
                                       chain_strength=1)

        self.assertEqual(
            embedded_bqm,
            dimod.BinaryQuadraticModel(
                {
                    0: 0,
                    1: 0,
                    2: 0,
                    3: 0
                },
                {
                    (0, 1): 1,
                    (1, 2): 1,
                    (2, 3): -1,
                    (0, 3): 1
                },
                1.0,  # offset the energy from satisfying chains
                dimod.SPIN))

        # check that the energy has been preserved
        for config in itertools.product((-1, 1), repeat=3):
            sample = dict(zip(('a', 'b', 'c'), config))
            target_sample = {
                u: sample[v]
                for v, chain in embedding.items() for u in chain
            }  # no chains broken
            self.assertAlmostEqual(bqm.energy(sample),
                                   embedded_bqm.energy(target_sample))
Пример #11
0
    def sample(self, bqm, chain_strength=1.0, **parameters):
        """Sample from the provided binary quadratic model.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            chain_strength (float, optional, default=1.0):
                Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
                chains. Note that the energy penalty of chain breaks is 2 * `chain_strength`.

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :class:`dimod.Response`

        Examples:
            This example uses :class:`.EmbeddingComposite` to instantiate a composed sampler
            that submits an unstructured Ising problem to a D-Wave solver, selected by the user's
            default D-Wave Cloud Client configuration_ file, while minor-embedding the problem's
            variables to physical qubits on the solver.

            >>> from dwave.system.samplers import DWaveSampler
            >>> from dwave.system.composites import EmbeddingComposite
            >>> import dimod
            >>> sampler = EmbeddingComposite(DWaveSampler())
            >>> h = {1: 1, 2: 2, 3: 3, 4: 4}
            >>> J = {(1, 2): 12, (1, 3): 13, (1, 4): 14,
            ...      (2, 3): 23, (2, 4): 24,
            ...      (3, 4): 34}
            >>> bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
            >>> response = sampler.sample(bqm)
            >>> for sample in response.samples():    # doctest: +SKIP
            ...     print(sample)
            ...
            {1: -1, 2: 1, 3: 1, 4: -1}

        """

        # solve the problem on the child system
        child = self.child

        # apply the embedding to the given problem to map it to the child sampler
        __, target_edgelist, target_adjacency = child.structure

        # add self-loops to edgelist to handle singleton variables
        source_edgelist = list(bqm.quadratic) + [(v, v) for v in bqm.linear]

        # get the embedding
        embedding = minorminer.find_embedding(source_edgelist, target_edgelist)

        if bqm and not embedding:
            raise ValueError("no embedding found")

        bqm_embedded = dimod.embed_bqm(bqm,
                                       embedding,
                                       target_adjacency,
                                       chain_strength=chain_strength)

        response = child.sample(bqm_embedded, **parameters)

        return dimod.unembed_response(response, embedding, source_bqm=bqm)
Пример #12
0
def factor(P, use_saved_embedding=True):

    ####################################################################################################
    # get circuit
    ####################################################################################################

    construction_start_time = time.time()

    validate_input(P, range(2 ** 6))

    # get constraint satisfaction problem
    csp = dbc.factories.multiplication_circuit(3)

    # get binary quadratic model
    bqm = dbc.stitch(csp, min_classical_gap=.1)

    # we know that multiplication_circuit() has created these variables
    p_vars = ['p0', 'p1', 'p2', 'p3', 'p4', 'p5']

    # convert P from decimal to binary
    fixed_variables = dict(zip(reversed(p_vars), "{:06b}".format(P)))
    fixed_variables = {var: int(x) for(var, x) in fixed_variables.items()}

    # fix product qubits
    for var, value in fixed_variables.items():
        bqm.fix_variable(var, value)

    log.debug('bqm construction time: %s', time.time() - construction_start_time)

    ####################################################################################################
    # run problem
    ####################################################################################################

    sample_time = time.time()

    # get QPU sampler
    sampler = DWaveSampler()
    _, target_edgelist, target_adjacency = sampler.structure

    if use_saved_embedding:
        # load a pre-calculated embedding
        from factoring.embedding import embeddings
        embedding = embeddings[sampler.solver.id]
    else:
        # get the embedding
        embedding = minorminer.find_embedding(bqm.quadratic, target_edgelist)
        if bqm and not embedding:
            raise ValueError("no embedding found")

    # apply the embedding to the given problem to map it to the sampler
    bqm_embedded = dimod.embed_bqm(bqm, embedding, target_adjacency, 3.0)

    # draw samples from the QPU
    kwargs = {}
    if 'num_reads' in sampler.parameters:
        kwargs['num_reads'] = 50
    if 'answer_mode' in sampler.parameters:
        kwargs['answer_mode'] = 'histogram'
    response = sampler.sample(bqm_embedded, **kwargs)

    # convert back to the original problem space
    response = dimod.unembed_response(response, embedding, source_bqm=bqm)

    sampler.client.close()

    log.debug('embedding and sampling time: %s', time.time() - sample_time)

    ####################################################################################################
    # output results
    ####################################################################################################

    output = {
        "results": [],
        #    {
        #        "a": Number,
        #        "b": Number,
        #        "valid": Boolean,
        #        "numOfOccurrences": Number,
        #        "percentageOfOccurrences": Number
        #    }
        "timing": {
            "actual": {
                "qpuProcessTime": None  # microseconds
            }
        },
        "numberOfReads": None
    }

    # we know that multiplication_circuit() has created these variables
    a_vars = ['a0', 'a1', 'a2']
    b_vars = ['b0', 'b1', 'b2']

    # histogram answer_mode should return counts for unique solutions
    if 'num_occurrences' not in response.data_vectors:
        response.data_vectors['num_occurrences'] = [1] * len(response)

    # should equal num_reads
    total = sum(response.data_vectors['num_occurrences'])

    results_dict = OrderedDict()
    for sample, num_occurrences in response.data(['sample', 'num_occurrences']):
        # convert A and B from binary to decimal
        a = b = 0
        for lbl in reversed(a_vars):
            a = (a << 1) | sample[lbl]
        for lbl in reversed(b_vars):
            b = (b << 1) | sample[lbl]
        # aggregate results by unique A and B values (ignoring internal circuit variables)
        if (a, b, P) in results_dict:
            results_dict[(a, b, P)]["numOfOccurrences"] += num_occurrences
            results_dict[(a, b, P)]["percentageOfOccurrences"] = 100 * \
                results_dict[(a, b, P)]["numOfOccurrences"] / total
        else:
            results_dict[(a, b, P)] = {"a": a,
                                       "b": b,
                                       "valid": a * b == P,
                                       "numOfOccurrences": num_occurrences,
                                       "percentageOfOccurrences": 100 * num_occurrences / total}

    output['results'] = list(results_dict.values())
    output['numberOfReads'] = total
    if 'timing' in response.info:
        output['timing']['actual']['qpuProcessTime'] = response.info['timing']['qpu_access_time']

    return output
Пример #13
0
    def sample(self, bqm, **kwargs):
        """Sample from the provided binary quadratic model

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            **kwargs:
                Optional keyword arguments for the sampling method, specified per solver.

        Returns:
            :class:`dimod.Response`

        Examples:
            This example uses :class:`.TilingComposite` to instantiate a composed sampler
            that submits a simple Ising problem of just two variables that map to qubits 0 and 1
            on the D-Wave solver selected by the user's default D-Wave Cloud Client
            configuration_ file. (The simplicity of this example obviates the need for an embedding
            composite.) Because the problem fits in a single Chimera_ unit cell, it is tiled 
            across the solver's entire Chimera graph, resulting in multiple samples.

            >>> from dwave.system.samplers import DWaveSampler
            >>> from dwave.system.composites import EmbeddingComposite
            >>> samplertile = TilingComposite(DWaveSampler(), 1, 1, 4)
            >>> response = sampler_tile.sample_ising({0: -1, 1: 1}, {})
            >>> for sample in response.samples():    # doctest: +SKIP
            ...     print(sample)
            ...
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            >>> # Snipped above response for brevity

        .. _configuration: http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
        .. _Chimera: http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera

        """

        # apply the embeddings to the given problem to tile it across the child sampler
        embedded_bqm = dimod.BinaryQuadraticModel.empty(bqm.vartype)
        __, __, target_adjacency = self.child.structure
        for embedding in self.embeddings:
            embedded_bqm.update(dimod.embed_bqm(bqm, embedding, target_adjacency))

        # solve the problem on the child system
        response = self.child.sample(embedded_bqm, **kwargs)

        data_vectors = response.data_vectors.copy()

        source_response = None

        for embedding in self.embeddings:

            # filter for problem variables
            embedding = {v: chain for v, chain in embedding.items() if v in bqm.linear}

            tile_response = dimod.unembed_response(response, embedding, source_bqm=bqm)

            if source_response is None:
                source_response = tile_response
                source_response.info.update(response.info)  # overwrite the info
            else:
                source_response.update(tile_response)

        return source_response
Пример #14
0
    def sample(self,
               bqm,
               chain_strength=1.0,
               chain_break_fraction=True,
               **parameters):
        """Sample from the provided binary quadratic model.

        Also set parameters for handling a chain, the set of vertices in a target graph that
        represents a source-graph vertex; when a D-Wave system is the sampler, it is a set
        of qubits that together represent a variable of the binary quadratic model being
        minor-embedded.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            chain_strength (float, optional, default=1.0):
                Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
                chains. The energy penalty of chain breaks is 2 * `chain_strength`.

            chain_break_fraction (bool, optional, default=True):
                If True, the unembedded response contains a ‘chain_break_fraction’ field
                that reports the fraction of chains broken before unembedding.

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :class:`dimod.Response`: A `dimod` :obj:`~dimod.Response` object.

        Examples:
            This example submits an triangle-structured problem to a D-Wave solver, selected
            by the user's default
            :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>`,
            using a specified minor-embedding of the problem’s variables to physical qubits.

            >>> from dwave.system.samplers import DWaveSampler
            >>> from dwave.system.composites import FixedEmbeddingComposite
            >>> import dimod
            ...
            >>> sampler = FixedEmbeddingComposite(DWaveSampler(), {'a': [0, 4], 'b': [1, 5], 'c': [2, 6]})
            >>> response = sampler.sample_ising({}, {'ab': 0.5, 'bc': 0.5, 'ca': 0.5}, chain_strength=2)
            >>> response.first    # doctest: +SKIP
            Sample(sample={'a': 1, 'b': -1, 'c': 1}, energy=-0.5, num_occurrences=1, chain_break_fraction=0.0)

        See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
        for explanations of technical terms in descriptions of Ocean tools.

        """

        # solve the problem on the child system
        child = self.child

        # apply the embedding to the given problem to map it to the child sampler
        __, __, target_adjacency = child.structure

        # get the embedding
        embedding = self.embedding

        bqm_embedded = dimod.embed_bqm(bqm,
                                       embedding,
                                       target_adjacency,
                                       chain_strength=chain_strength)

        if 'initial_state' in parameters:
            parameters['initial_state'] = _embed_state(
                embedding, parameters['initial_state'])

        response = child.sample(bqm_embedded, **parameters)

        return dimod.unembed_response(
            response,
            embedding,
            source_bqm=bqm,
            chain_break_fraction=chain_break_fraction)
Пример #15
0
    def sample(self,
               bqm,
               chain_strength=1.0,
               chain_break_fraction=True,
               **parameters):
        """Sample from the provided binary quadratic model.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            chain_strength (float, optional, default=1.0):
                Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
                chains. Note that the energy penalty of chain breaks is 2 * `chain_strength`.

            chain_break_fraction (bool, optional, default=True):
                If True, a ‘chain_break_fraction’ field is added to the unembedded response which report
                what fraction of the chains were broken before unembedding.

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :class:`dimod.Response`

        Examples:
            This example uses :class:`.EmbeddingComposite` to instantiate a composed sampler
            that submits an unstructured Ising problem to a D-Wave solver, selected by the user's
            default
            :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>`,
            while minor-embedding the problem's variables to physical qubits on the solver.

            >>> from dwave.system.samplers import DWaveSampler
            >>> from dwave.system.composites import EmbeddingComposite
            >>> import dimod
            >>> sampler = EmbeddingComposite(DWaveSampler())
            >>> h = {1: 1, 2: 2, 3: 3, 4: 4}
            >>> J = {(1, 2): 12, (1, 3): 13, (1, 4): 14,
            ...      (2, 3): 23, (2, 4): 24,
            ...      (3, 4): 34}
            >>> bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
            >>> response = sampler.sample(bqm)
            >>> for sample in response.samples():    # doctest: +SKIP
            ...     print(sample)
            ...
            {1: -1, 2: 1, 3: 1, 4: -1}

        See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
        for explanations of technical terms in descriptions of Ocean tools.
        """

        # solve the problem on the child system
        child = self.child

        # apply the embedding to the given problem to map it to the child sampler
        __, target_edgelist, target_adjacency = child.structure

        # add self-loops to edgelist to handle singleton variables
        source_edgelist = list(bqm.quadratic) + [(v, v) for v in bqm.linear]

        # get the embedding
        embedding = minorminer.find_embedding(source_edgelist, target_edgelist)

        if bqm and not embedding:
            raise ValueError("no embedding found")

        bqm_embedded = dimod.embed_bqm(bqm,
                                       embedding,
                                       target_adjacency,
                                       chain_strength=chain_strength)

        if 'initial_state' in parameters:
            parameters['initial_state'] = _embed_state(
                embedding, parameters['initial_state'])

        response = child.sample(bqm_embedded, **parameters)

        return dimod.unembed_response(
            response,
            embedding,
            source_bqm=bqm,
            chain_break_fraction=chain_break_fraction)
Пример #16
0
    def sample(self, bqm, **kwargs):
        """Sample from the provided binary quadratic model

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            **kwargs:
                Optional keyword arguments for the sampling method, specified per solver.

        Returns:
            :class:`dimod.Response`

        Examples:
            This example uses :class:`.TilingComposite` to instantiate a composed sampler
            that submits a simple Ising problem of just two variables that map to qubits 0 and 1
            on the D-Wave solver selected by the user's default
            :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>`.
            (The simplicity of this example obviates the need for an embedding
            composite.) Because the problem fits in a single
            :std:doc:`Chimera <system:reference/intro>` unit cell, it is tiled
            across the solver's entire Chimera graph, resulting in multiple samples.

            >>> from dwave.system.samplers import DWaveSampler
            >>> from dwave.system.composites import EmbeddingComposite, TilingComposite
            >>> sampler = TilingComposite(DWaveSampler(), 1, 1, 4)
            >>> response = sampler.sample_ising({0: -1, 1: 1}, {})
            >>> for sample in response.samples():    # doctest: +SKIP
            ...     print(sample)
            ...
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            {0: 1, 1: -1}
            >>> # Snipped above response for brevity

        See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
        for explanations of technical terms in descriptions of Ocean tools.

        """

        # apply the embeddings to the given problem to tile it across the child sampler
        embedded_bqm = dimod.BinaryQuadraticModel.empty(bqm.vartype)
        __, __, target_adjacency = self.child.structure
        for embedding in self.embeddings:
            embedded_bqm.update(
                dimod.embed_bqm(bqm, embedding, target_adjacency))

        # solve the problem on the child system
        tiled_response = self.child.sample(embedded_bqm, **kwargs)

        responses = []

        for embedding in self.embeddings:
            embedding = {
                v: chain
                for v, chain in embedding.items() if v in bqm.linear
            }

            responses.append(
                dimod.unembed_response(tiled_response, embedding, bqm))

        # stack the records
        record = np.rec.array(np.hstack((resp.record for resp in responses)))

        vartypes = set(resp.vartype for resp in responses)
        if len(vartypes) > 1:
            raise RuntimeError("inconsistent vartypes returned")
        vartype = vartypes.pop()

        info = {}
        for resp in responses:
            info.update(resp.info)

        labels = responses[0].variable_labels

        return dimod.Response(record, labels, info, vartype)
Пример #17
0
    def sample(self, bqm, **kwargs):
        """Sample from the specified binary quadratic model.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            **kwargs:
                Optional keyword arguments for the sampling method, specified per solver.

        Returns:
            :class:`dimod.Response`: A `dimod` :obj:`~dimod.Response` object.

        Examples:
            This example submits a simple Ising problem of just two variables on a
            D-Wave system selected by the user's default
            :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>`.
            Because the problem fits in a single :term:`Chimera` unit cell, it is tiled
            across the solver's entire Chimera graph, resulting in multiple samples
            (the exact number depends on the working Chimera graph of the D-Wave system).

            >>> from dwave.system.samplers import DWaveSampler
            >>> from dwave.system.composites import EmbeddingComposite
            >>> from dwave.system.composites import EmbeddingComposite, TilingComposite
            ...
            >>> sampler = EmbeddingComposite(TilingComposite(DWaveSampler(), 1, 1, 4))
            >>> response = sampler.sample_ising({},{('a', 'b'): 1})
            >>> len(response)    # doctest: +SKIP
            246

        See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
        for explanations of technical terms in descriptions of Ocean tools.

        """

        # apply the embeddings to the given problem to tile it across the child sampler
        embedded_bqm = dimod.BinaryQuadraticModel.empty(bqm.vartype)
        __, __, target_adjacency = self.child.structure
        for embedding in self.embeddings:
            embedded_bqm.update(
                dimod.embed_bqm(bqm, embedding, target_adjacency))

        # solve the problem on the child system
        tiled_response = self.child.sample(embedded_bqm, **kwargs)

        responses = []

        for embedding in self.embeddings:
            embedding = {
                v: chain
                for v, chain in embedding.items() if v in bqm.linear
            }

            responses.append(
                dimod.unembed_response(tiled_response, embedding, bqm))

        # stack the records
        record = np.rec.array(np.hstack((resp.record for resp in responses)))

        vartypes = set(resp.vartype for resp in responses)
        if len(vartypes) > 1:
            raise RuntimeError("inconsistent vartypes returned")
        vartype = vartypes.pop()

        info = {}
        for resp in responses:
            info.update(resp.info)

        labels = responses[0].variable_labels

        return dimod.Response(record, labels, info, vartype)
Пример #18
0
    def sample(self, bqm, apply_flux_bias_offsets=True, **kwargs):
        """Sample from the given Ising model.

        Args:

            h (list/dict):
                Linear biases of the Ising model. If a list, the list's indices
                are used as variable labels.

            J (dict of (int, int):float):
                Quadratic biases of the Ising model.

            apply_flux_bias_offsets (bool, optional):
                If True, use the calculated flux_bias offsets (if available).

            **kwargs:
                Optional keyword arguments for the sampling method, specified per solver.

        Examples:
           This example uses :class:`.VirtualGraphComposite` to instantiate a composed sampler
           that submits an Ising problem to a D-Wave solver selected by the user's
           default D-Wave Cloud Client configuration_ file. The problem represents a logical
           NOT gate using penalty function :math:`P = xy`, where variable x is the gate's input
           and y the output. This simple two-variable problem is manually
           minor-embedded to a single Chimera_ unit cell: each variable is represented by a
           chain of half the cell's qubits, x as qubits 0, 1, 4, 5, and y as qubits 2, 3, 6, 7.
           The chain strength is set to half the maximum allowed found from querying the solver's extended
           J range. In this example, the ten returned samples all represent valid states of
           the NOT gate.

           >>> from dwave.system.samplers import DWaveSampler
           >>> from dwave.system.composites import VirtualGraphComposite
           >>> embedding = {'x': {0, 4, 1, 5}, 'y': {2, 6, 3, 7}}
           >>> DWaveSampler().properties['extended_j_range']   # doctest: +SKIP
           [-2.0, 1.0]
           >>> sampler = VirtualGraphComposite(DWaveSampler(), embedding, chain_strength=1) # doctest: +SKIP
           >>> h = {}
           >>> J = {('x', 'y'): 1}
           >>> response = sampler.sample_ising(h, J, num_reads=10) # doctest: +SKIP
           >>> for sample in response.samples():    # doctest: +SKIP
           ...     print(sample)
           ...
           {'y': -1, 'x': 1}
           {'y': 1, 'x': -1}
           {'y': -1, 'x': 1}
           {'y': -1, 'x': 1}
           {'y': -1, 'x': 1}
           {'y': 1, 'x': -1}
           {'y': 1, 'x': -1}
           {'y': 1, 'x': -1}
           {'y': -1, 'x': 1}
           {'y': 1, 'x': -1}

        .. _configuration: http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
        .. _Chimera: http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera

        """

        # apply the embedding to the given problem to map it to the child sampler
        __, __, target_adjacency = self.child.structure
        embedding = self.embedding
        embedded_bqm = dimod.embed_bqm(bqm, self.embedding, target_adjacency, self.chain_strength)

        # solve the problem on the child system
        child = self.child

        if apply_flux_bias_offsets and self.flux_biases is not None:
            # If self.flux_biases is in the old format (list of lists) convert it to the new format (flat list).
            if isinstance(self.flux_biases[0], list):
                flux_bias_dict = dict(self.flux_biases)
                kwargs[FLUX_BIAS_KWARG] = [flux_bias_dict.get(v, 0.) for v in range(child.properties['num_qubits'])]
            else:
                kwargs[FLUX_BIAS_KWARG] = self.flux_biases
            assert len(kwargs[FLUX_BIAS_KWARG]) == child.properties['num_qubits'], \
                "{} must have length {}, the solver's num_qubits."\
                .format(FLUX_BIAS_KWARG, child.properties['num_qubits'])

        # Embed arguments providing initial states for reverse annealing, if applicable.
        kwargs = _embed_initial_state_kwargs(kwargs, self.embedding, self.child.structure[0])

        response = child.sample(embedded_bqm, **kwargs)

        return dimod.unembed_response(response, embedding, source_bqm=bqm)
Пример #19
0
_, target_edgelist, target_adjacency = sampler.structure


# Mapping between the graph of our problem&mdash;the multiplication circuit's graph with nodes labeled "a0", "b0" etc.&mdash;to the D-Wave QPU's numerically indexed qubits, is known as *minor-embedding*. A problem can be minor embedded onto the QPU in a variety of ways and this affects solution quality and performance. Ocean software provides tools suited for different types of problems; for example, [dwave-system](https://docs.ocean.dwavesys.com/projects/system/en/latest/) *EmbeddingComposite()* has a heuristic for automatic embedding.

# This example uses a pre-calculated minor-embedding (see [below](#Further-Information) for details).

# In[ ]:


import dimod
from helpers.embedding import embeddings

# Set a pre-calculated minor-embeding
embedding = embeddings[sampler.solver.id]
bqm_embedded = dimod.embed_bqm(bqm, embedding, target_adjacency, 3.0)

# Confirm mapping of variables from a0, b0, etc to indexed qubits
print("Variable a0 in embedded BQM: ", 'a0' in bqm_embedded) # False
print("First five nodes in QPU graph: ", sampler.structure.nodelist[:5]) # [0, 1, 2, 3, 4]


# When the D‑Wave quantum computer solves a problem, it uses quantum phenomena such as superposition and tunneling to explore all possible solutions simultaneously and find a set of the best ones. Because the sampled solution is probabilistic, returned solutions may differ between runs. Typically, when submitting a problem to the system, we ask for many samples, not just one. This way, we see multiple “best” answers and reduce the probability of settling on a suboptimal answer.

# In the code below, *num_reads* should provide enough samples to make it likely a valid answer is among them.

# In[ ]:


# Return num_reads solutions (responses are in the D-Wave's graph of indexed qubits)
kwargs = {}
Пример #20
0
    def test_embed_bqm_only_offset(self):
        bqm = dimod.BinaryQuadraticModel({}, {}, 1.0, dimod.SPIN)

        embedded_bqm = dimod.embed_bqm(bqm, {}, {})

        self.assertEqual(bqm, embedded_bqm)