Пример #1
0
def test_almosteq():
    assert CC.almosteq(CC(2), 3) is False
    assert CC.almosteq(2, CC(3)) is False
    assert CC.almosteq(2, CC(2.5), 0.1) is False
    assert CC.almosteq(2, CC(2.5), 1.0) is True

    assert RR.almosteq(5, RR(2), 1) is True
    assert RR._context.almosteq(RR(2), 1, None, 1) is True
Пример #2
0
def test_RR_Float():
    f1 = Float("1.01", 15)
    f2 = Float("1.0000000000000000000001")
    assert f1._prec == 53
    assert f2._prec == 80
    assert RR(f1) - 1 > 1e-50
    assert RR(f2) - 1 < 1e-50  # RR's precision is lower than f2's

    RR2 = RealField(prec=f2._prec)
    assert RR2(f1) - 1 > 1e-50
    assert RR2(f2) - 1 > 1e-50  # RR's precision is equal to f2's

    a = RR(2.1)
    assert a.numerator == a and a.denominator == 1
Пример #3
0
def test_Domain_interface():
    pytest.raises(TypeError, lambda: DomainElement().parent)

    assert RR(1).parent is RR
    assert CC(1).parent is CC

    assert RR.has_default_precision
    assert CC.has_default_precision

    RR3 = RealField(prec=53, dps=3)
    assert str(RR3(1.7611107002)) == '1.76'

    assert RealField(tol=3).tolerance == 3.0
    assert RealField(tol=0.1).tolerance == 0.1
    assert RealField(tol="0.1").tolerance == 0.1
    pytest.raises(ValueError, lambda: RealField(tol=object()))

    pytest.raises(AttributeError, lambda: CC.ring)
    pytest.raises(DomainError, lambda: CC.get_exact())

    assert str(EX(1)) == 'EX(1)'

    assert EX(1).as_expr() == Integer(1)
    assert bool(EX(1)) is True
    assert bool(EX(0)) is False
Пример #4
0
def test_almosteq():
    assert CC.almosteq(CC(2), 3) is False
    assert CC.almosteq(2, CC(3)) is False
    assert CC.almosteq(2, CC(2.5), 0.1) is False
    assert CC.almosteq(2, CC(2.5), 1.0) is True

    assert RR.almosteq(5, RR(2), 1) is True
    assert RR._context.almosteq(RR(2), 1, None, 1) is True
Пример #5
0
def test_Domain_convert():
    assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576)

    R, x = ring("x", ZZ)
    assert ZZ.convert(x - x) == 0
    assert ZZ.convert(x - x, R) == 0

    F3 = FF(3)
    assert F3.convert(Float(2.0)) == F3.dtype(2)
    assert F3.convert(PythonRational(2, 1)) == F3.dtype(2)
    pytest.raises(CoercionFailed, lambda: F3.convert(PythonRational(1, 2)))
    assert F3.convert(2.0) == F3.dtype(2)
    pytest.raises(CoercionFailed, lambda: F3.convert(2.1))

    assert RR.convert(CC(1)) == RR(1)
    pytest.raises(CoercionFailed, lambda: RR.convert(CC(1, 2)))

    assert QQ.convert(ALG.new(1), ALG) == QQ(1)
    pytest.raises(CoercionFailed, lambda: QQ.convert(ALG.new([1, 1]), ALG))

    assert ZZ.convert(ALG.new(1), ALG) == ZZ(1)
    pytest.raises(CoercionFailed, lambda: ZZ.convert(ALG.new([1, 1]), ALG))

    assert EX.convert(ALG.new([1, 1]), ALG) == sqrt(2) + sqrt(3) + 1

    ALG2 = QQ.algebraic_field(sqrt(2))
    a2 = ALG2.convert(sqrt(2))
    a = ALG.convert(a2, ALG2)
    assert a.rep.to_dense() == [QQ(1, 2), 0, -QQ(9, 2), 0]

    assert ZZ_python.convert(3.0) == ZZ_python.dtype(3)
    pytest.raises(CoercionFailed, lambda: ZZ_python.convert(3.2))

    assert CC.convert(QQ_python(1, 2)) == CC(0.5)
    CC01 = ComplexField(tol=0.1)
    assert CC.convert(CC01(0.3)) == CC(0.3)

    assert RR.convert(complex(2 + 0j)) == RR(2)
    pytest.raises(CoercionFailed, lambda: RR.convert(complex(2 + 3j)))

    assert ALG.convert(EX(sqrt(2)), EX) == ALG.from_expr(sqrt(2))
    pytest.raises(CoercionFailed, lambda: ALG.convert(EX(sqrt(5)), EX))

    pytest.raises(CoercionFailed, lambda: ALG2.convert(ALG.unit))
Пример #6
0
def test_RR_double():
    assert RR(3.14) > 1e-50
    assert RR(1e-13) > 1e-50
    assert RR(1e-14) > 1e-50
    assert RR(1e-15) > 1e-50
    assert RR(1e-20) > 1e-50
    assert RR(1e-40) > 1e-50
Пример #7
0
def test_Domain_convert():
    assert QQ.convert(10e-52) == QQ(
        1684996666696915,
        1684996666696914987166688442938726917102321526408785780068975640576)

    R, x = ring("x", ZZ)
    assert ZZ.convert(x - x) == 0
    assert ZZ.convert(x - x, R) == 0

    F3 = FF(3)
    assert F3.convert(Float(2.0)) == F3.dtype(2)
    assert F3.convert(PythonRational(2, 1)) == F3.dtype(2)
    pytest.raises(CoercionFailed, lambda: F3.convert(PythonRational(1, 2)))
    assert F3.convert(2.0) == F3.dtype(2)
    pytest.raises(CoercionFailed, lambda: F3.convert(2.1))

    assert RR.convert(CC(1)) == RR(1)
    pytest.raises(CoercionFailed, lambda: RR.convert(CC(1, 2)))

    assert QQ.convert(ALG(1), ALG) == QQ(1)
    pytest.raises(CoercionFailed, lambda: QQ.convert(ALG([1, 1]), ALG))

    assert ZZ.convert(ALG(1), ALG) == ZZ(1)
    pytest.raises(CoercionFailed, lambda: ZZ.convert(ALG([1, 1]), ALG))

    assert EX.convert(ALG([1, 1]), ALG) == sqrt(2) + sqrt(3) + 1

    ALG2 = QQ.algebraic_field(sqrt(2))
    a2 = ALG2.convert(sqrt(2))
    a = ALG.convert(a2, ALG2)
    assert a.rep.to_dense() == [QQ(1, 2), 0, -QQ(9, 2), 0]
    assert RR.convert(a) == RR(1.4142135623730951)
    assert CC.convert(a) == CC(1.4142135623730951)

    assert ZZ_python.convert(3.0) == ZZ_python.dtype(3)
    pytest.raises(CoercionFailed, lambda: ZZ_python.convert(3.2))

    assert CC.convert(QQ_python(1, 2)) == CC(0.5)
    CC01 = ComplexField(tol=0.1)
    assert CC.convert(CC01(0.3)) == CC(0.3)

    assert RR.convert(complex(2 + 0j)) == RR(2)
    pytest.raises(CoercionFailed, lambda: RR.convert(complex(2 + 3j)))

    assert ALG.convert(EX(sqrt(2)), EX) == ALG.from_expr(sqrt(2))
    pytest.raises(CoercionFailed, lambda: ALG.convert(EX(sqrt(5)), EX))

    pytest.raises(CoercionFailed, lambda: ALG2.convert(ALG.unit))
Пример #8
0
def test_Domain_get_exact():
    assert EX.get_exact() == EX
    assert ZZ.get_exact() == ZZ
    assert QQ.get_exact() == QQ
    assert RR.get_exact() == QQ
    assert ALG.get_exact() == ALG
    assert ZZ.poly_ring(x).get_exact() == ZZ.poly_ring(x)
    assert QQ.poly_ring(x).get_exact() == QQ.poly_ring(x)
    assert ZZ.poly_ring(x, y).get_exact() == ZZ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).get_exact() == QQ.poly_ring(x, y)
    assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
    assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
    assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y)
    assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
Пример #9
0
def test_Domain_get_exact():
    assert EX.get_exact() == EX
    assert ZZ.get_exact() == ZZ
    assert QQ.get_exact() == QQ
    assert RR.get_exact() == QQ
    assert ALG.get_exact() == ALG
    assert ZZ.poly_ring(x).get_exact() == ZZ.poly_ring(x)
    assert QQ.poly_ring(x).get_exact() == QQ.poly_ring(x)
    assert ZZ.poly_ring(x, y).get_exact() == ZZ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).get_exact() == QQ.poly_ring(x, y)
    assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
    assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
    assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y)
    assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
Пример #10
0
def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == F3
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ.poly_ring(x)) == F3.poly_ring(x)
    assert unify(F3, ZZ.frac_field(x)) == F3.frac_field(x)
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == F3
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ.poly_ring(x)) == RR.poly_ring(x)
    assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
    assert unify(RR, EX) == EX

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ.poly_ring(x)) == CC.poly_ring(x)
    assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
    assert unify(CC, EX) == EX

    CC2 = ComplexField(prec=20)
    assert unify(CC, CC2) == unify(CC2, CC) == ComplexField(prec=CC.precision,
                                                            tol=CC2.tolerance)
    RR2 = RealField(prec=20)
    assert unify(RR, RR2) == unify(RR2, RR) == RealField(prec=RR.precision,
                                                         tol=RR2.tolerance)

    assert unify(ZZ.poly_ring(x), F3) == F3.poly_ring(x)
    assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), ALG) == ALG.poly_ring(x)
    assert unify(ZZ.poly_ring(x), RR) == RR.poly_ring(x)
    assert unify(ZZ.poly_ring(x), CC) == CC.poly_ring(x)
    assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.poly_ring(x), EX) == EX

    assert unify(ZZ.frac_field(x), F3) == F3.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
    assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
    assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ.poly_ring(x)) == EX
    assert unify(EX, ZZ.frac_field(x)) == EX
    assert unify(EX, EX) == EX
Пример #11
0
def test_Domain__contains__():
    assert (0 in EX) is True
    assert (0 in ZZ) is True
    assert (0 in QQ) is True
    assert (0 in RR) is True
    assert (0 in CC) is True
    assert (0 in ALG) is True
    assert (0 in ZZ.poly_ring(x, y)) is True
    assert (0 in QQ.poly_ring(x, y)) is True
    assert (0 in RR.poly_ring(x, y)) is True

    assert (-7 in EX) is True
    assert (-7 in ZZ) is True
    assert (-7 in QQ) is True
    assert (-7 in RR) is True
    assert (-7 in CC) is True
    assert (-7 in ALG) is True
    assert (-7 in ZZ.poly_ring(x, y)) is True
    assert (-7 in QQ.poly_ring(x, y)) is True
    assert (-7 in RR.poly_ring(x, y)) is True

    assert (17 in EX) is True
    assert (17 in ZZ) is True
    assert (17 in QQ) is True
    assert (17 in RR) is True
    assert (17 in CC) is True
    assert (17 in ALG) is True
    assert (17 in ZZ.poly_ring(x, y)) is True
    assert (17 in QQ.poly_ring(x, y)) is True
    assert (17 in RR.poly_ring(x, y)) is True

    assert (-Rational(1, 7) in EX) is True
    assert (-Rational(1, 7) in ZZ) is False
    assert (-Rational(1, 7) in QQ) is True
    assert (-Rational(1, 7) in RR) is True
    assert (-Rational(1, 7) in CC) is True
    assert (-Rational(1, 7) in ALG) is True
    assert (-Rational(1, 7) in ZZ.poly_ring(x, y)) is False
    assert (-Rational(1, 7) in QQ.poly_ring(x, y)) is True
    assert (-Rational(1, 7) in RR.poly_ring(x, y)) is True

    assert (Rational(3, 5) in EX) is True
    assert (Rational(3, 5) in ZZ) is False
    assert (Rational(3, 5) in QQ) is True
    assert (Rational(3, 5) in RR) is True
    assert (Rational(3, 5) in CC) is True
    assert (Rational(3, 5) in ALG) is True
    assert (Rational(3, 5) in ZZ.poly_ring(x, y)) is False
    assert (Rational(3, 5) in QQ.poly_ring(x, y)) is True
    assert (Rational(3, 5) in RR.poly_ring(x, y)) is True

    assert (3.0 in EX) is True
    assert (3.0 in ZZ) is True
    assert (3.0 in QQ) is True
    assert (3.0 in RR) is True
    assert (3.0 in CC) is True
    assert (3.0 in ALG) is True
    assert (3.0 in ZZ.poly_ring(x, y)) is True
    assert (3.0 in QQ.poly_ring(x, y)) is True
    assert (3.0 in RR.poly_ring(x, y)) is True

    assert (3.14 in EX) is True
    assert (3.14 in ZZ) is False
    assert (3.14 in QQ) is True
    assert (3.14 in RR) is True
    assert (3.14 in CC) is True
    assert (3.14 in ALG) is True
    assert (3.14 in ZZ.poly_ring(x, y)) is False
    assert (3.14 in QQ.poly_ring(x, y)) is True
    assert (3.14 in RR.poly_ring(x, y)) is True

    assert (oo in EX) is True
    assert (oo in ZZ) is False
    assert (oo in QQ) is False
    assert (oo in RR) is True
    assert (oo in CC) is True
    assert (oo in ALG) is False
    assert (oo in ZZ.poly_ring(x, y)) is False
    assert (oo in QQ.poly_ring(x, y)) is False
    assert (oo in RR.poly_ring(x, y)) is True

    assert (-oo in EX) is True
    assert (-oo in ZZ) is False
    assert (-oo in QQ) is False
    assert (-oo in RR) is True
    assert (-oo in CC) is True
    assert (-oo in ALG) is False
    assert (-oo in ZZ.poly_ring(x, y)) is False
    assert (-oo in QQ.poly_ring(x, y)) is False
    assert (-oo in RR.poly_ring(x, y)) is True

    assert (sqrt(7) in EX) is True
    assert (sqrt(7) in ZZ) is False
    assert (sqrt(7) in QQ) is False
    assert (sqrt(7) in RR) is True
    assert (sqrt(7) in CC) is True
    assert (sqrt(7) in ALG) is False
    assert (sqrt(7) in ZZ.poly_ring(x, y)) is False
    assert (sqrt(7) in QQ.poly_ring(x, y)) is False
    assert (sqrt(7) in RR.poly_ring(x, y)) is True

    assert (2 * sqrt(3) + 1 in EX) is True
    assert (2 * sqrt(3) + 1 in ZZ) is False
    assert (2 * sqrt(3) + 1 in QQ) is False
    assert (2 * sqrt(3) + 1 in RR) is True
    assert (2 * sqrt(3) + 1 in CC) is True
    assert (2 * sqrt(3) + 1 in ALG) is True
    assert (2 * sqrt(3) + 1 in ZZ.poly_ring(x, y)) is False
    assert (2 * sqrt(3) + 1 in QQ.poly_ring(x, y)) is False
    assert (2 * sqrt(3) + 1 in RR.poly_ring(x, y)) is True

    assert (sin(1) in EX) is True
    assert (sin(1) in ZZ) is False
    assert (sin(1) in QQ) is False
    assert (sin(1) in RR) is True
    assert (sin(1) in CC) is True
    assert (sin(1) in ALG) is False
    assert (sin(1) in ZZ.poly_ring(x, y)) is False
    assert (sin(1) in QQ.poly_ring(x, y)) is False
    assert (sin(1) in RR.poly_ring(x, y)) is True

    assert (x**2 + 1 in EX) is True
    assert (x**2 + 1 in ZZ) is False
    assert (x**2 + 1 in QQ) is False
    assert (x**2 + 1 in RR) is False
    assert (x**2 + 1 in CC) is False
    assert (x**2 + 1 in ALG) is False
    assert (x**2 + 1 in ZZ.poly_ring(x)) is True
    assert (x**2 + 1 in QQ.poly_ring(x)) is True
    assert (x**2 + 1 in RR.poly_ring(x)) is True
    assert (x**2 + 1 in ZZ.poly_ring(x, y)) is True
    assert (x**2 + 1 in QQ.poly_ring(x, y)) is True
    assert (x**2 + 1 in RR.poly_ring(x, y)) is True

    assert (x**2 + y**2 in EX) is True
    assert (x**2 + y**2 in ZZ) is False
    assert (x**2 + y**2 in QQ) is False
    assert (x**2 + y**2 in RR) is False
    assert (x**2 + y**2 in CC) is False
    assert (x**2 + y**2 in ALG) is False
    assert (x**2 + y**2 in ZZ.poly_ring(x)) is False
    assert (x**2 + y**2 in QQ.poly_ring(x)) is False
    assert (x**2 + y**2 in RR.poly_ring(x)) is False
    assert (x**2 + y**2 in ZZ.poly_ring(x, y)) is True
    assert (x**2 + y**2 in QQ.poly_ring(x, y)) is True
    assert (x**2 + y**2 in RR.poly_ring(x, y)) is True

    assert (Rational(3, 2) * x / (y + 1) - z in QQ.poly_ring(x, y, z)) is False
Пример #12
0
def test_dmp_factor_list():
    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list(0) == (ZZ(0), [])
    assert R.dmp_factor_list(7) == (7, [])

    R, x, y = ring("x,y", QQ)
    assert R.dmp_factor_list(0) == (QQ(0), [])
    assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    Rt, t = ring("t", ZZ)
    R, x, y = ring("x,y", Rt)
    assert R.dmp_factor_list(0) == (0, [])
    assert R.dmp_factor_list(7) == (ZZ(7), [])

    Rt, t = ring("t", QQ)
    R, x, y = ring("x,y", Rt)
    assert R.dmp_factor_list(0) == (0, [])
    assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list_include(0) == [(0, 1)]
    assert R.dmp_factor_list_include(7) == [(7, 1)]

    R, *X = ring("x:200", ZZ)

    f, g = X[0]**2 + 2 * X[0] + 1, X[0] + 1
    assert R.dmp_factor_list(f) == (1, [(g, 2)])

    f, g = X[-1]**2 + 2 * X[-1] + 1, X[-1] + 1
    assert R.dmp_factor_list(f) == (1, [(g, 2)])

    R, x = ring("x", ZZ)
    assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    R, x = ring("x", QQ)
    assert R.dmp_factor_list(x**2 / 2 + x + QQ(1, 2)) == (QQ(1,
                                                             2), [(x + 1, 2)])

    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    R, x, y = ring("x,y", QQ)
    assert R.dmp_factor_list(x**2 / 2 + x + QQ(1, 2)) == (QQ(1,
                                                             2), [(x + 1, 2)])

    R, x, y = ring("x,y", ZZ)
    f = 4 * x**2 * y + 4 * x * y**2

    assert R.dmp_factor_list(f) == \
        (4, [(y, 1),
             (x, 1),
             (x + y, 1)])

    assert R.dmp_factor_list_include(f) == \
        [(4*y, 1),
         (x, 1),
         (x + y, 1)]

    R, x, y = ring("x,y", QQ)
    f = x**2 * y / 2 + x * y**2 / 2

    assert R.dmp_factor_list(f) == \
        (QQ(1, 2), [(y, 1),
                    (x, 1),
                    (x + y, 1)])

    R, x, y = ring("x,y", RR)
    f = 2.0 * x**2 - 8.0 * y**2

    assert R.dmp_factor_list(f) == \
        (RR(2.0), [(1.0*x - 2.0*y, 1),
                   (1.0*x + 2.0*y, 1)])

    f = 6.7225336055071 * x**2 * y**2 - 10.6463972754741 * x * y - 0.33469524022264
    coeff, factors = R.dmp_factor_list(f)
    assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(
        f, 1e-10) and factors[0][1] == 1

    # issue diofant/diofant#238
    R, x, y, z = ring("x,y,z", RR)
    f = x * y + x * z + 0.1 * y + 0.1 * z
    assert R.dmp_factor_list(f) == (10.0, [(0.1 * y + 0.1 * z, 1),
                                           (x + 0.1, 1)])
    f = 0.25 * x**2 + 1.0 * x * y * z + 1.0 * y**2 * z**2
    assert R.dmp_factor_list(f) == (4.0, [(0.25 * x + 0.5 * y * z, 2)])

    Rt, t = ring("t", ZZ)
    R, x, y = ring("x,y", Rt)
    f = 4 * t * x**2 + 4 * t**2 * x

    assert R.dmp_factor_list(f) == \
        (4*t, [(x, 1),
               (x + t, 1)])

    Rt, t = ring("t", QQ)
    R, x, y = ring("x,y", Rt)
    f = t * x**2 / 2 + t**2 * x / 2

    assert R.dmp_factor_list(f) == (t / 2, [(x, 1), (x + t, 1)])

    R, x, y = ring("x,y", FF(2))
    pytest.raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2))

    R, x, y = ring("x,y", EX)
    pytest.raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))
Пример #13
0
def test_RealField_from_expr():
    assert RR.convert(Integer(0)) == RR.dtype(0)
    assert RR.convert(Float(0.0)) == RR.dtype(0.0)
    assert RR.convert(Integer(1)) == RR.dtype(1)
    assert RR.convert(Float(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    assert RR.convert(oo) == RR("+inf")
    assert RR.convert(-oo) == RR("-inf")
    pytest.raises(CoercionFailed, lambda: RR.convert(x))
Пример #14
0
def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == F3
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ.poly_ring(x)) == F3.poly_ring(x)
    assert unify(F3, ZZ.frac_field(x)) == F3.frac_field(x)
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == F3
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ.poly_ring(x)) == RR.poly_ring(x)
    assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
    assert unify(RR, EX) == EX

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ.poly_ring(x)) == CC.poly_ring(x)
    assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
    assert unify(CC, EX) == EX

    CC2 = ComplexField(prec=20)
    assert unify(CC, CC2) == unify(CC2, CC) == ComplexField(prec=CC.precision,
                                                            tol=CC2.tolerance)
    RR2 = RealField(prec=20)
    assert unify(RR, RR2) == unify(RR2, RR) == RealField(prec=RR.precision,
                                                         tol=RR2.tolerance)

    assert unify(ZZ.poly_ring(x), F3) == F3.poly_ring(x)
    assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), ALG) == ALG.poly_ring(x)
    assert unify(ZZ.poly_ring(x), RR) == RR.poly_ring(x)
    assert unify(ZZ.poly_ring(x), CC) == CC.poly_ring(x)
    assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.poly_ring(x), EX) == EX

    assert unify(ZZ.frac_field(x), F3) == F3.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
    assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
    assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ.poly_ring(x)) == EX
    assert unify(EX, ZZ.frac_field(x)) == EX
    assert unify(EX, EX) == EX
Пример #15
0
def test_Domain__contains__():
    assert (0 in EX) is True
    assert (0 in ZZ) is True
    assert (0 in QQ) is True
    assert (0 in RR) is True
    assert (0 in CC) is True
    assert (0 in ALG) is True
    assert (0 in ZZ.poly_ring(x, y)) is True
    assert (0 in QQ.poly_ring(x, y)) is True
    assert (0 in RR.poly_ring(x, y)) is True

    assert (-7 in EX) is True
    assert (-7 in ZZ) is True
    assert (-7 in QQ) is True
    assert (-7 in RR) is True
    assert (-7 in CC) is True
    assert (-7 in ALG) is True
    assert (-7 in ZZ.poly_ring(x, y)) is True
    assert (-7 in QQ.poly_ring(x, y)) is True
    assert (-7 in RR.poly_ring(x, y)) is True

    assert (17 in EX) is True
    assert (17 in ZZ) is True
    assert (17 in QQ) is True
    assert (17 in RR) is True
    assert (17 in CC) is True
    assert (17 in ALG) is True
    assert (17 in ZZ.poly_ring(x, y)) is True
    assert (17 in QQ.poly_ring(x, y)) is True
    assert (17 in RR.poly_ring(x, y)) is True

    assert (-Rational(1, 7) in EX) is True
    assert (-Rational(1, 7) in ZZ) is False
    assert (-Rational(1, 7) in QQ) is True
    assert (-Rational(1, 7) in RR) is True
    assert (-Rational(1, 7) in CC) is True
    assert (-Rational(1, 7) in ALG) is True
    assert (-Rational(1, 7) in ZZ.poly_ring(x, y)) is False
    assert (-Rational(1, 7) in QQ.poly_ring(x, y)) is True
    assert (-Rational(1, 7) in RR.poly_ring(x, y)) is True

    assert (Rational(3, 5) in EX) is True
    assert (Rational(3, 5) in ZZ) is False
    assert (Rational(3, 5) in QQ) is True
    assert (Rational(3, 5) in RR) is True
    assert (Rational(3, 5) in CC) is True
    assert (Rational(3, 5) in ALG) is True
    assert (Rational(3, 5) in ZZ.poly_ring(x, y)) is False
    assert (Rational(3, 5) in QQ.poly_ring(x, y)) is True
    assert (Rational(3, 5) in RR.poly_ring(x, y)) is True

    assert (3.0 in EX) is True
    assert (3.0 in ZZ) is True
    assert (3.0 in QQ) is True
    assert (3.0 in RR) is True
    assert (3.0 in CC) is True
    assert (3.0 in ALG) is True
    assert (3.0 in ZZ.poly_ring(x, y)) is True
    assert (3.0 in QQ.poly_ring(x, y)) is True
    assert (3.0 in RR.poly_ring(x, y)) is True

    assert (3.14 in EX) is True
    assert (3.14 in ZZ) is False
    assert (3.14 in QQ) is True
    assert (3.14 in RR) is True
    assert (3.14 in CC) is True
    assert (3.14 in ALG) is True
    assert (3.14 in ZZ.poly_ring(x, y)) is False
    assert (3.14 in QQ.poly_ring(x, y)) is True
    assert (3.14 in RR.poly_ring(x, y)) is True

    assert (oo in EX) is True
    assert (oo in ZZ) is False
    assert (oo in QQ) is False
    assert (oo in RR) is True
    assert (oo in CC) is True
    assert (oo in ALG) is False
    assert (oo in ZZ.poly_ring(x, y)) is False
    assert (oo in QQ.poly_ring(x, y)) is False
    assert (oo in RR.poly_ring(x, y)) is True

    assert (-oo in EX) is True
    assert (-oo in ZZ) is False
    assert (-oo in QQ) is False
    assert (-oo in RR) is True
    assert (-oo in CC) is True
    assert (-oo in ALG) is False
    assert (-oo in ZZ.poly_ring(x, y)) is False
    assert (-oo in QQ.poly_ring(x, y)) is False
    assert (-oo in RR.poly_ring(x, y)) is True

    assert (sqrt(7) in EX) is True
    assert (sqrt(7) in ZZ) is False
    assert (sqrt(7) in QQ) is False
    assert (sqrt(7) in RR) is True
    assert (sqrt(7) in CC) is True
    assert (sqrt(7) in ALG) is False
    assert (sqrt(7) in ZZ.poly_ring(x, y)) is False
    assert (sqrt(7) in QQ.poly_ring(x, y)) is False
    assert (sqrt(7) in RR.poly_ring(x, y)) is True

    assert (2*sqrt(3) + 1 in EX) is True
    assert (2*sqrt(3) + 1 in ZZ) is False
    assert (2*sqrt(3) + 1 in QQ) is False
    assert (2*sqrt(3) + 1 in RR) is True
    assert (2*sqrt(3) + 1 in CC) is True
    assert (2*sqrt(3) + 1 in ALG) is True
    assert (2*sqrt(3) + 1 in ZZ.poly_ring(x, y)) is False
    assert (2*sqrt(3) + 1 in QQ.poly_ring(x, y)) is False
    assert (2*sqrt(3) + 1 in RR.poly_ring(x, y)) is True

    assert (sin(1) in EX) is True
    assert (sin(1) in ZZ) is False
    assert (sin(1) in QQ) is False
    assert (sin(1) in RR) is True
    assert (sin(1) in CC) is True
    assert (sin(1) in ALG) is False
    assert (sin(1) in ZZ.poly_ring(x, y)) is False
    assert (sin(1) in QQ.poly_ring(x, y)) is False
    assert (sin(1) in RR.poly_ring(x, y)) is True

    assert (x**2 + 1 in EX) is True
    assert (x**2 + 1 in ZZ) is False
    assert (x**2 + 1 in QQ) is False
    assert (x**2 + 1 in RR) is False
    assert (x**2 + 1 in CC) is False
    assert (x**2 + 1 in ALG) is False
    assert (x**2 + 1 in ZZ.poly_ring(x)) is True
    assert (x**2 + 1 in QQ.poly_ring(x)) is True
    assert (x**2 + 1 in RR.poly_ring(x)) is True
    assert (x**2 + 1 in ZZ.poly_ring(x, y)) is True
    assert (x**2 + 1 in QQ.poly_ring(x, y)) is True
    assert (x**2 + 1 in RR.poly_ring(x, y)) is True

    assert (x**2 + y**2 in EX) is True
    assert (x**2 + y**2 in ZZ) is False
    assert (x**2 + y**2 in QQ) is False
    assert (x**2 + y**2 in RR) is False
    assert (x**2 + y**2 in CC) is False
    assert (x**2 + y**2 in ALG) is False
    assert (x**2 + y**2 in ZZ.poly_ring(x)) is False
    assert (x**2 + y**2 in QQ.poly_ring(x)) is False
    assert (x**2 + y**2 in RR.poly_ring(x)) is False
    assert (x**2 + y**2 in ZZ.poly_ring(x, y)) is True
    assert (x**2 + y**2 in QQ.poly_ring(x, y)) is True
    assert (x**2 + y**2 in RR.poly_ring(x, y)) is True

    assert (Rational(3, 2)*x/(y + 1) - z in QQ.poly_ring(x, y, z)) is False
Пример #16
0
def test_RealField_from_expr():
    assert RR.convert(Integer(0)) == RR.dtype(0)
    assert RR.convert(Float(0.0)) == RR.dtype(0.0)
    assert RR.convert(Integer(1)) == RR.dtype(1)
    assert RR.convert(Float(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    assert RR.convert(oo) == RR("+inf")
    assert RR.convert(-oo) == RR("-inf")
    pytest.raises(CoercionFailed, lambda: RR.convert(x))
Пример #17
0
def test_construct_domain():
    assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([1, 2, 3],
                            field=True) == (QQ, [QQ(1), QQ(2),
                                                 QQ(3)])

    assert construct_domain([Integer(1), Integer(2),
                             Integer(3)]) == (ZZ, [ZZ(1), ZZ(2),
                                                   ZZ(3)])
    assert construct_domain(
        [Integer(1), Integer(2), Integer(3)],
        field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])

    assert construct_domain([Rational(1, 2),
                             Integer(2)]) == (QQ, [QQ(1, 2), QQ(2)])
    assert construct_domain([3.14, 1, Rational(1, 2)
                             ]) == (RR, [RR(3.14), RR(1.0),
                                         RR(0.5)])

    assert construct_domain([3.14, sqrt(2)],
                            extension=None) == (EX, [EX(3.14),
                                                     EX(sqrt(2))])
    assert construct_domain([3.14, sqrt(2)],
                            extension=True) == (EX, [EX(3.14),
                                                     EX(sqrt(2))])
    assert construct_domain([sqrt(2), 3.14],
                            extension=True) == (EX, [EX(sqrt(2)),
                                                     EX(3.14)])

    assert construct_domain([1, sqrt(2)],
                            extension=None) == (EX, [EX(1), EX(sqrt(2))])

    assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
    assert construct_domain([x, sqrt(x), sqrt(y)
                             ]) == (EX, [EX(x),
                                         EX(sqrt(x)),
                                         EX(sqrt(y))])

    alg = QQ.algebraic_field(sqrt(2))

    assert (construct_domain(
        [7, Rational(1, 2), sqrt(2)],
        extension=True) == (alg, [alg(7),
                                  alg(Rational(1, 2)),
                                  alg(sqrt(2))]))

    alg = QQ.algebraic_field(sqrt(2) + sqrt(3))

    assert (construct_domain([7, sqrt(2), sqrt(3)], extension=True) == (alg, [
        alg(7), alg(sqrt(2)), alg(sqrt(3))
    ]))

    dom = ZZ.poly_ring(x)

    assert construct_domain([2 * x, 3]) == (dom, [dom(2 * x), dom(3)])

    dom = ZZ.poly_ring(x, y)

    assert construct_domain([2 * x, 3 * y]) == (dom, [dom(2 * x), dom(3 * y)])

    dom = QQ.poly_ring(x)

    assert construct_domain([x / 2, 3]) == (dom, [dom(x / 2), dom(3)])

    dom = QQ.poly_ring(x, y)

    assert construct_domain([x / 2, 3 * y]) == (dom, [dom(x / 2), dom(3 * y)])

    dom = RR.poly_ring(x)

    assert construct_domain([x / 2, 3.5]) == (dom, [dom(x / 2), dom(3.5)])

    dom = RR.poly_ring(x, y)

    assert construct_domain([x / 2,
                             3.5 * y]) == (dom, [dom(x / 2),
                                                 dom(3.5 * y)])

    dom = ZZ.frac_field(x)

    assert construct_domain([2 / x, 3]) == (dom, [dom(2 / x), dom(3)])

    dom = ZZ.frac_field(x, y)

    assert construct_domain([2 / x, 3 * y]) == (dom, [dom(2 / x), dom(3 * y)])

    dom = RR.frac_field(x)

    assert construct_domain([2 / x, 3.5]) == (dom, [dom(2 / x), dom(3.5)])

    dom = RR.frac_field(x, y)

    assert construct_domain([2 / x,
                             3.5 * y]) == (dom, [dom(2 / x),
                                                 dom(3.5 * y)])

    assert construct_domain(2) == (ZZ, ZZ(2))
    assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3))

    assert construct_domain({}) == (ZZ, {})
Пример #18
0
def test_dup_factor_list():
    R, x = ring("x", ZZ)
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(7) == (7, [])

    R, x = ring("x", QQ)
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x = ring("x", ZZ.poly_ring('t'))
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(7) == (7, [])

    R, x = ring("x", QQ.poly_ring('t'))
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x = ring("x", ZZ)
    assert R.dup_factor_list_include(0) == [(0, 1)]
    assert R.dup_factor_list_include(7) == [(7, 1)]

    assert R.dup_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    assert R.dup_factor_list_include(x**2 + 2 * x + 1) == [(x + 1, 2)]
    # issue sympy/sympy#8037
    assert R.dup_factor_list(6 * x**2 - 5 * x - 6) == (1, [(2 * x - 3, 1),
                                                           (3 * x + 2, 1)])

    R, x = ring("x", QQ)
    assert R.dup_factor_list(x**2 / 2 + x + QQ(1, 2)) == (QQ(1,
                                                             2), [(x + 1, 2)])

    R, x = ring("x", FF(2))
    assert R.dup_factor_list(x**2 + 1) == (1, [(x + 1, 2)])

    R, x = ring("x", RR)
    assert R.dup_factor_list(1.0 * x**2 + 2.0 * x + 1.0) == (1.0, [
        (1.0 * x + 1.0, 2)
    ])
    assert R.dup_factor_list(2.0 * x**2 + 4.0 * x + 2.0) == (2.0, [
        (1.0 * x + 1.0, 2)
    ])

    f = 6.7225336055071 * x**2 - 10.6463972754741 * x - 0.33469524022264
    coeff, factors = R.dup_factor_list(f)
    assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(
        f, 1e-10) and factors[0][1] == 1

    # issue diofant/diofant#238
    f = 0.1 * x**2 + 1.1 * x + 1.0
    assert R.dup_factor_list(f) == (10.0, [(0.1 * x + 0.1, 1),
                                           (0.1 * x + 1.0, 1)])
    f = 0.25 + 1.0 * x + 1.0 * x**2
    assert R.dup_factor_list(f) == (4.0, [(0.25 + 0.5 * x, 2)])

    Rt, t = ring("t", ZZ)
    R, x = ring("x", Rt)

    f = 4 * t * x**2 + 4 * t**2 * x

    assert R.dup_factor_list(f) == \
        (4*t, [(x, 1),
               (x + t, 1)])

    Rt, t = ring("t", QQ)
    R, x = ring("x", Rt)

    f = t * x**2 / 2 + t**2 * x / 2

    assert R.dup_factor_list(f) == (t / 2, [(x, 1), (x + t, 1)])

    R, x = ring("x", QQ.algebraic_field(I))

    f = x**4 + 2 * x**2

    assert R.dup_factor_list(f) == (R.domain(1), [(x, 2), (x**2 + 2, 1)])

    R, x = ring("x", EX)
    pytest.raises(DomainError, lambda: R.dup_factor_list(EX(sin(1))))