def test_catalan(): n = Symbol('n', integer=True) m = Symbol('n', integer=True, positive=True) catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786] for i, c in enumerate(catalans): assert catalan(i) == c assert catalan(n).rewrite(factorial).subs(n, i) == c assert catalan(n).rewrite(Product).subs(n, i).doit() == c assert catalan(x) == catalan(x) assert catalan(2 * x).rewrite(binomial) == binomial(4 * x, 2 * x) / (2 * x + 1) assert catalan(Rational(1, 2)).rewrite(gamma) == 8 / (3 * pi) assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\ 8 / (3 * pi) assert catalan(3 * x).rewrite(gamma) == 4**( 3 * x) * gamma(3 * x + Rational(1, 2)) / (sqrt(pi) * gamma(3 * x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2, ), 1) assert catalan(n).rewrite(factorial) == factorial( 2 * n) / (factorial(n + 1) * factorial(n)) assert isinstance(catalan(n).rewrite(Product), catalan) assert isinstance(catalan(m).rewrite(Product), Product) assert diff(catalan(x), x) == (polygamma(0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4)) * catalan(x) assert catalan(x).evalf() == catalan(x) c = catalan(S.Half).evalf() assert str(c) == '0.848826363156775' c = catalan(I).evalf(3) assert sstr((re(c), im(c))) == '(0.398, -0.0209)'
def test_catalan(): n = Symbol('n', integer=True) m = Symbol('n', integer=True, positive=True) catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786] for i, c in enumerate(catalans): assert catalan(i) == c assert catalan(n).rewrite(factorial).subs({n: i}) == c assert catalan(n).rewrite(Product).subs({n: i}).doit() == c assert catalan(x) == catalan(x) assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1) assert catalan(Rational(1, 2)).rewrite(gamma) == 8/(3*pi) assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\ 8 / (3 * pi) assert catalan(3*x).rewrite(gamma) == 4**( 3*x)*gamma(3*x + Rational(1, 2))/(sqrt(pi)*gamma(3*x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1) assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1) * factorial(n)) assert isinstance(catalan(n).rewrite(Product), catalan) assert isinstance(catalan(m).rewrite(Product), Product) assert diff(catalan(x), x) == (polygamma( 0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4))*catalan(x) assert catalan(x).evalf() == catalan(x) c = catalan(Rational(1, 2)).evalf() assert str(c) == '0.848826363156775' c = catalan(I).evalf(3) assert sstr((re(c), im(c))) == '(0.398, -0.0209)'
def test_harmonic_rewrite_polygamma(): n = Symbol("n") m = Symbol("m") assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma assert harmonic( n, 3).rewrite(polygamma) == polygamma(2, n + 1) / 2 - polygamma(2, 1) / 2 assert harmonic(n, m).rewrite(polygamma) == (-1)**m * ( polygamma(m - 1, 1) - polygamma(m - 1, n + 1)) / factorial(m - 1) assert expand_func( harmonic(n + 4) ) == harmonic(n) + 1 / (n + 4) + 1 / (n + 3) + 1 / (n + 2) + 1 / (n + 1) assert expand_func(harmonic( n - 4)) == harmonic(n) - 1 / (n - 1) - 1 / (n - 2) - 1 / (n - 3) - 1 / n assert harmonic(n, m).rewrite("tractable") == harmonic( n, m).rewrite(polygamma).rewrite(gamma).rewrite("tractable") assert expand_func(harmonic(n, 2)).func is harmonic
def _eval_rewrite_as_Sum(self, ap, bq, z): from diofant.functions import factorial, RisingFactorial, Piecewise from diofant import Sum n = Dummy("n", integer=True) rfap = Tuple(*[RisingFactorial(a, n) for a in ap]) rfbq = Tuple(*[RisingFactorial(b, n) for b in bq]) coeff = Mul(*rfap) / Mul(*rfbq) return Piecewise((Sum(coeff * z**n / factorial(n), (n, 0, oo)), self.convergence_statement), (self, True))
def test_Function(): assert mcode(f(x, y, z)) == "f[x, y, z]" assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]" assert mcode(sign(x)) == "Sign[x]" assert mcode(atanh(x), user_functions={"atanh": "ArcTanh"}) == "ArcTanh[x]" assert (mcode(meijerg(((1, 1), (3, 4)), ((1,), ()), x)) == "MeijerG[{{1, 1}, {3, 4}}, {{1}, {}}, x]") assert (mcode(hyper((1, 2, 3), (3, 4), x)) == "HypergeometricPFQ[{1, 2, 3}, {3, 4}, x]") assert mcode(Min(x, y)) == "Min[x, y]" assert mcode(Max(x, y)) == "Max[x, y]" assert mcode(Max(x, 2)) == "Max[2, x]" # issue sympy/sympy#15344 assert mcode(binomial(x, y)) == "Binomial[x, y]" assert mcode(log(x)) == "Log[x]" assert mcode(tan(x)) == "Tan[x]" assert mcode(cot(x)) == "Cot[x]" assert mcode(asin(x)) == "ArcSin[x]" assert mcode(acos(x)) == "ArcCos[x]" assert mcode(atan(x)) == "ArcTan[x]" assert mcode(acot(x)) == "ArcCot[x]" assert mcode(sinh(x)) == "Sinh[x]" assert mcode(cosh(x)) == "Cosh[x]" assert mcode(tanh(x)) == "Tanh[x]" assert mcode(coth(x)) == "Coth[x]" assert mcode(asinh(x)) == "ArcSinh[x]" assert mcode(acosh(x)) == "ArcCosh[x]" assert mcode(atanh(x)) == "ArcTanh[x]" assert mcode(acoth(x)) == "ArcCoth[x]" assert mcode(sech(x)) == "Sech[x]" assert mcode(csch(x)) == "Csch[x]" assert mcode(erfc(x)) == "Erfc[x]" assert mcode(conjugate(x)) == "Conjugate[x]" assert mcode(re(x)) == "Re[x]" assert mcode(im(x)) == "Im[x]" assert mcode(polygamma(x, y)) == "PolyGamma[x, y]" assert mcode(factorial(x)) == "Factorial[x]" assert mcode(factorial2(x)) == "Factorial2[x]" assert mcode(rf(x, y)) == "Pochhammer[x, y]" assert mcode(gamma(x)) == "Gamma[x]" assert mcode(zeta(x)) == "Zeta[x]" assert mcode(Heaviside(x)) == "UnitStep[x]" assert mcode(fibonacci(x)) == "Fibonacci[x]" assert mcode(polylog(x, y)) == "PolyLog[x, y]" class myfunc1(Function): @classmethod def eval(cls, x): pass class myfunc2(Function): @classmethod def eval(cls, x, y): pass pytest.raises(ValueError, lambda: mcode(myfunc1(x), user_functions={"myfunc1": ["Myfunc1"]})) assert mcode(myfunc1(x), user_functions={"myfunc1": "Myfunc1"}) == "Myfunc1[x]" assert mcode(myfunc2(x, y), user_functions={"myfunc2": [(lambda *x: False, "Myfunc2")]}) == "myfunc2[x, y]"
def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True): """ Return an Euler-Maclaurin approximation of self, where m is the number of leading terms to sum directly and n is the number of terms in the tail. With m = n = 0, this is simply the corresponding integral plus a first-order endpoint correction. Returns (s, e) where s is the Euler-Maclaurin approximation and e is the estimated error (taken to be the magnitude of the first omitted term in the tail): >>> from diofant.abc import k, a, b >>> Sum(1/k, (k, 2, 5)).doit().evalf() 1.28333333333333 >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin() >>> s -log(2) + 7/20 + log(5) >>> from diofant import sstr >>> print(sstr((s.evalf(), e.evalf()), full_prec=True)) (1.26629073187415, 0.0175000000000000) The endpoints may be symbolic: >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin() >>> s -log(a) + log(b) + 1/(2*b) + 1/(2*a) >>> e Abs(1/(12*b**2) - 1/(12*a**2)) If the function is a polynomial of degree at most 2n+1, the Euler-Maclaurin formula becomes exact (and e = 0 is returned): >>> Sum(k, (k, 2, b)).euler_maclaurin() (b**2/2 + b/2 - 1, 0) >>> Sum(k, (k, 2, b)).doit() b**2/2 + b/2 - 1 With a nonzero eps specified, the summation is ended as soon as the remainder term is less than the epsilon. """ from diofant.functions import bernoulli, factorial from diofant.integrals import Integral m = int(m) n = int(n) f = self.function if len(self.limits) != 1: raise ValueError("More than 1 limit") i, a, b = self.limits[0] if (a > b) is S.true: if a - b == 1: return S.Zero, S.Zero a, b = b + 1, a - 1 f = -f s = S.Zero if m: if b.is_Integer and a.is_Integer: m = min(m, b - a + 1) if not eps or f.is_polynomial(i): for k in range(m): s += f.subs(i, a + k) else: term = f.subs(i, a) if term: test = abs(term.evalf(3)) < eps if test == S.true: return s, abs(term) elif not (test == S.false): # a symbolic Relational class, can't go further return term, S.Zero s += term for k in range(1, m): term = f.subs(i, a + k) if abs(term.evalf(3)) < eps and term != 0: return s, abs(term) s += term if b - a + 1 == m: return s, S.Zero a += m x = Dummy('x') I = Integral(f.subs(i, x), (x, a, b)) if eval_integral: I = I.doit() s += I def fpoint(expr): if b is S.Infinity: return expr.subs(i, a), 0 return expr.subs(i, a), expr.subs(i, b) fa, fb = fpoint(f) iterm = (fa + fb) / 2 g = f.diff(i) for k in range(1, n + 2): ga, gb = fpoint(g) term = bernoulli(2 * k) / factorial(2 * k) * (gb - ga) if (eps and term and abs(term.evalf(3)) < eps) or (k > n): break s += term g = g.diff(i, 2, simplify=False) return s + iterm, abs(term)
def test_Function(): assert mcode(f(x, y, z)) == "f[x, y, z]" assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]" assert mcode(sign(x)) == "Sign[x]" assert mcode(atanh(x), user_functions={"atanh": "ArcTanh"}) == "ArcTanh[x]" assert (mcode(meijerg(((1, 1), (3, 4)), ((1,), ()), x)) == "MeijerG[{{1, 1}, {3, 4}}, {{1}, {}}, x]") assert (mcode(hyper((1, 2, 3), (3, 4), x)) == "HypergeometricPFQ[{1, 2, 3}, {3, 4}, x]") assert mcode(Min(x, y)) == "Min[x, y]" assert mcode(Max(x, y)) == "Max[x, y]" assert mcode(Max(x, 2)) == "Max[2, x]" # issue sympy/sympy#15344 assert mcode(binomial(x, y)) == "Binomial[x, y]" assert mcode(log(x)) == "Log[x]" assert mcode(tan(x)) == "Tan[x]" assert mcode(cot(x)) == "Cot[x]" assert mcode(asin(x)) == "ArcSin[x]" assert mcode(acos(x)) == "ArcCos[x]" assert mcode(atan(x)) == "ArcTan[x]" assert mcode(sinh(x)) == "Sinh[x]" assert mcode(cosh(x)) == "Cosh[x]" assert mcode(tanh(x)) == "Tanh[x]" assert mcode(coth(x)) == "Coth[x]" assert mcode(sech(x)) == "Sech[x]" assert mcode(csch(x)) == "Csch[x]" assert mcode(erfc(x)) == "Erfc[x]" assert mcode(conjugate(x)) == "Conjugate[x]" assert mcode(re(x)) == "Re[x]" assert mcode(im(x)) == "Im[x]" assert mcode(polygamma(x, y)) == "PolyGamma[x, y]" assert mcode(factorial(x)) == "Factorial[x]" assert mcode(factorial2(x)) == "Factorial2[x]" assert mcode(rf(x, y)) == "Pochhammer[x, y]" assert mcode(gamma(x)) == "Gamma[x]" assert mcode(zeta(x)) == "Zeta[x]" assert mcode(asinh(x)) == "ArcSinh[x]" assert mcode(Heaviside(x)) == "UnitStep[x]" assert mcode(fibonacci(x)) == "Fibonacci[x]" assert mcode(polylog(x, y)) == "PolyLog[x, y]" assert mcode(atanh(x)) == "ArcTanh[x]" class myfunc1(Function): @classmethod def eval(cls, x): pass class myfunc2(Function): @classmethod def eval(cls, x, y): pass pytest.raises(ValueError, lambda: mcode(myfunc1(x), user_functions={"myfunc1": ["Myfunc1"]})) assert mcode(myfunc1(x), user_functions={"myfunc1": "Myfunc1"}) == "Myfunc1[x]" assert mcode(myfunc2(x, y), user_functions={"myfunc2": [(lambda *x: False, "Myfunc2")]}) == "myfunc2[x, y]"
def test_harmonic_rewrite_polygamma(): n = Symbol("n") m = Symbol("m") assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n, 3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2 assert harmonic(n, m).rewrite(polygamma) == (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1) assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma).rewrite(gamma).rewrite("tractable") assert isinstance(expand_func(harmonic(n, 2)), harmonic) assert expand_func(harmonic(n + Rational(1, 2))) == expand_func(harmonic(n + Rational(1, 2))) assert expand_func(harmonic(Rational(-1, 2))) == harmonic(Rational(-1, 2)) assert expand_func(harmonic(x)) == harmonic(x)