Пример #1
0
def test_catalan():
    n = Symbol('n', integer=True)
    m = Symbol('n', integer=True, positive=True)

    catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786]
    for i, c in enumerate(catalans):
        assert catalan(i) == c
        assert catalan(n).rewrite(factorial).subs(n, i) == c
        assert catalan(n).rewrite(Product).subs(n, i).doit() == c

    assert catalan(x) == catalan(x)
    assert catalan(2 *
                   x).rewrite(binomial) == binomial(4 * x, 2 * x) / (2 * x + 1)
    assert catalan(Rational(1, 2)).rewrite(gamma) == 8 / (3 * pi)
    assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\
        8 / (3 * pi)
    assert catalan(3 * x).rewrite(gamma) == 4**(
        3 * x) * gamma(3 * x + Rational(1, 2)) / (sqrt(pi) * gamma(3 * x + 2))
    assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2, ), 1)

    assert catalan(n).rewrite(factorial) == factorial(
        2 * n) / (factorial(n + 1) * factorial(n))
    assert isinstance(catalan(n).rewrite(Product), catalan)
    assert isinstance(catalan(m).rewrite(Product), Product)

    assert diff(catalan(x), x) == (polygamma(0, x + Rational(1, 2)) -
                                   polygamma(0, x + 2) + log(4)) * catalan(x)

    assert catalan(x).evalf() == catalan(x)
    c = catalan(S.Half).evalf()
    assert str(c) == '0.848826363156775'
    c = catalan(I).evalf(3)
    assert sstr((re(c), im(c))) == '(0.398, -0.0209)'
Пример #2
0
def test_catalan():
    n = Symbol('n', integer=True)
    m = Symbol('n', integer=True, positive=True)

    catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786]
    for i, c in enumerate(catalans):
        assert catalan(i) == c
        assert catalan(n).rewrite(factorial).subs({n: i}) == c
        assert catalan(n).rewrite(Product).subs({n: i}).doit() == c

    assert catalan(x) == catalan(x)
    assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1)
    assert catalan(Rational(1, 2)).rewrite(gamma) == 8/(3*pi)
    assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\
        8 / (3 * pi)
    assert catalan(3*x).rewrite(gamma) == 4**(
        3*x)*gamma(3*x + Rational(1, 2))/(sqrt(pi)*gamma(3*x + 2))
    assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1)

    assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1)
                                                              * factorial(n))
    assert isinstance(catalan(n).rewrite(Product), catalan)
    assert isinstance(catalan(m).rewrite(Product), Product)

    assert diff(catalan(x), x) == (polygamma(
        0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4))*catalan(x)

    assert catalan(x).evalf() == catalan(x)
    c = catalan(Rational(1, 2)).evalf()
    assert str(c) == '0.848826363156775'
    c = catalan(I).evalf(3)
    assert sstr((re(c), im(c))) == '(0.398, -0.0209)'
Пример #3
0
def test_harmonic_rewrite_polygamma():
    n = Symbol("n")
    m = Symbol("m")

    assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma
    assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma
    assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma

    assert harmonic(
        n,
        3).rewrite(polygamma) == polygamma(2, n + 1) / 2 - polygamma(2, 1) / 2
    assert harmonic(n, m).rewrite(polygamma) == (-1)**m * (
        polygamma(m - 1, 1) - polygamma(m - 1, n + 1)) / factorial(m - 1)

    assert expand_func(
        harmonic(n + 4)
    ) == harmonic(n) + 1 / (n + 4) + 1 / (n + 3) + 1 / (n + 2) + 1 / (n + 1)
    assert expand_func(harmonic(
        n -
        4)) == harmonic(n) - 1 / (n - 1) - 1 / (n - 2) - 1 / (n - 3) - 1 / n

    assert harmonic(n, m).rewrite("tractable") == harmonic(
        n, m).rewrite(polygamma).rewrite(gamma).rewrite("tractable")

    assert expand_func(harmonic(n, 2)).func is harmonic
Пример #4
0
 def _eval_rewrite_as_Sum(self, ap, bq, z):
     from diofant.functions import factorial, RisingFactorial, Piecewise
     from diofant import Sum
     n = Dummy("n", integer=True)
     rfap = Tuple(*[RisingFactorial(a, n) for a in ap])
     rfbq = Tuple(*[RisingFactorial(b, n) for b in bq])
     coeff = Mul(*rfap) / Mul(*rfbq)
     return Piecewise((Sum(coeff * z**n / factorial(n),
                           (n, 0, oo)), self.convergence_statement),
                      (self, True))
Пример #5
0
def test_Function():
    assert mcode(f(x, y, z)) == "f[x, y, z]"
    assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]"
    assert mcode(sign(x)) == "Sign[x]"

    assert mcode(atanh(x), user_functions={"atanh": "ArcTanh"}) == "ArcTanh[x]"

    assert (mcode(meijerg(((1, 1), (3, 4)), ((1,), ()), x)) ==
            "MeijerG[{{1, 1}, {3, 4}}, {{1}, {}}, x]")
    assert (mcode(hyper((1, 2, 3), (3, 4), x)) ==
            "HypergeometricPFQ[{1, 2, 3}, {3, 4}, x]")

    assert mcode(Min(x, y)) == "Min[x, y]"
    assert mcode(Max(x, y)) == "Max[x, y]"
    assert mcode(Max(x, 2)) == "Max[2, x]"  # issue sympy/sympy#15344

    assert mcode(binomial(x, y)) == "Binomial[x, y]"

    assert mcode(log(x)) == "Log[x]"
    assert mcode(tan(x)) == "Tan[x]"
    assert mcode(cot(x)) == "Cot[x]"
    assert mcode(asin(x)) == "ArcSin[x]"
    assert mcode(acos(x)) == "ArcCos[x]"
    assert mcode(atan(x)) == "ArcTan[x]"
    assert mcode(acot(x)) == "ArcCot[x]"
    assert mcode(sinh(x)) == "Sinh[x]"
    assert mcode(cosh(x)) == "Cosh[x]"
    assert mcode(tanh(x)) == "Tanh[x]"
    assert mcode(coth(x)) == "Coth[x]"
    assert mcode(asinh(x)) == "ArcSinh[x]"
    assert mcode(acosh(x)) == "ArcCosh[x]"
    assert mcode(atanh(x)) == "ArcTanh[x]"
    assert mcode(acoth(x)) == "ArcCoth[x]"
    assert mcode(sech(x)) == "Sech[x]"
    assert mcode(csch(x)) == "Csch[x]"
    assert mcode(erfc(x)) == "Erfc[x]"
    assert mcode(conjugate(x)) == "Conjugate[x]"
    assert mcode(re(x)) == "Re[x]"
    assert mcode(im(x)) == "Im[x]"
    assert mcode(polygamma(x, y)) == "PolyGamma[x, y]"
    assert mcode(factorial(x)) == "Factorial[x]"
    assert mcode(factorial2(x)) == "Factorial2[x]"
    assert mcode(rf(x, y)) == "Pochhammer[x, y]"
    assert mcode(gamma(x)) == "Gamma[x]"
    assert mcode(zeta(x)) == "Zeta[x]"
    assert mcode(Heaviside(x)) == "UnitStep[x]"
    assert mcode(fibonacci(x)) == "Fibonacci[x]"
    assert mcode(polylog(x, y)) == "PolyLog[x, y]"

    class myfunc1(Function):
        @classmethod
        def eval(cls, x):
            pass

    class myfunc2(Function):
        @classmethod
        def eval(cls, x, y):
            pass

    pytest.raises(ValueError,
                  lambda: mcode(myfunc1(x),
                                user_functions={"myfunc1": ["Myfunc1"]}))
    assert mcode(myfunc1(x),
                 user_functions={"myfunc1": "Myfunc1"}) == "Myfunc1[x]"
    assert mcode(myfunc2(x, y),
                 user_functions={"myfunc2": [(lambda *x: False,
                                              "Myfunc2")]}) == "myfunc2[x, y]"
Пример #6
0
    def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
        """
        Return an Euler-Maclaurin approximation of self, where m is the
        number of leading terms to sum directly and n is the number of
        terms in the tail.

        With m = n = 0, this is simply the corresponding integral
        plus a first-order endpoint correction.

        Returns (s, e) where s is the Euler-Maclaurin approximation
        and e is the estimated error (taken to be the magnitude of
        the first omitted term in the tail):

            >>> from diofant.abc import k, a, b

            >>> Sum(1/k, (k, 2, 5)).doit().evalf()
            1.28333333333333
            >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
            >>> s
            -log(2) + 7/20 + log(5)
            >>> from diofant import sstr
            >>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
            (1.26629073187415, 0.0175000000000000)

        The endpoints may be symbolic:

            >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
            >>> s
            -log(a) + log(b) + 1/(2*b) + 1/(2*a)
            >>> e
            Abs(1/(12*b**2) - 1/(12*a**2))

        If the function is a polynomial of degree at most 2n+1, the
        Euler-Maclaurin formula becomes exact (and e = 0 is returned):

            >>> Sum(k, (k, 2, b)).euler_maclaurin()
            (b**2/2 + b/2 - 1, 0)
            >>> Sum(k, (k, 2, b)).doit()
            b**2/2 + b/2 - 1

        With a nonzero eps specified, the summation is ended
        as soon as the remainder term is less than the epsilon.
        """
        from diofant.functions import bernoulli, factorial
        from diofant.integrals import Integral

        m = int(m)
        n = int(n)
        f = self.function
        if len(self.limits) != 1:
            raise ValueError("More than 1 limit")
        i, a, b = self.limits[0]
        if (a > b) is S.true:
            if a - b == 1:
                return S.Zero, S.Zero
            a, b = b + 1, a - 1
            f = -f
        s = S.Zero
        if m:
            if b.is_Integer and a.is_Integer:
                m = min(m, b - a + 1)
            if not eps or f.is_polynomial(i):
                for k in range(m):
                    s += f.subs(i, a + k)
            else:
                term = f.subs(i, a)
                if term:
                    test = abs(term.evalf(3)) < eps
                    if test == S.true:
                        return s, abs(term)
                    elif not (test == S.false):
                        # a symbolic Relational class, can't go further
                        return term, S.Zero
                s += term
                for k in range(1, m):
                    term = f.subs(i, a + k)
                    if abs(term.evalf(3)) < eps and term != 0:
                        return s, abs(term)
                    s += term
            if b - a + 1 == m:
                return s, S.Zero
            a += m
        x = Dummy('x')
        I = Integral(f.subs(i, x), (x, a, b))
        if eval_integral:
            I = I.doit()
        s += I

        def fpoint(expr):
            if b is S.Infinity:
                return expr.subs(i, a), 0
            return expr.subs(i, a), expr.subs(i, b)

        fa, fb = fpoint(f)
        iterm = (fa + fb) / 2
        g = f.diff(i)
        for k in range(1, n + 2):
            ga, gb = fpoint(g)
            term = bernoulli(2 * k) / factorial(2 * k) * (gb - ga)
            if (eps and term and abs(term.evalf(3)) < eps) or (k > n):
                break
            s += term
            g = g.diff(i, 2, simplify=False)
        return s + iterm, abs(term)
Пример #7
0
def test_Function():
    assert mcode(f(x, y, z)) == "f[x, y, z]"
    assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]"
    assert mcode(sign(x)) == "Sign[x]"

    assert mcode(atanh(x), user_functions={"atanh": "ArcTanh"}) == "ArcTanh[x]"

    assert (mcode(meijerg(((1, 1), (3, 4)), ((1,), ()), x)) ==
            "MeijerG[{{1, 1}, {3, 4}}, {{1}, {}}, x]")
    assert (mcode(hyper((1, 2, 3), (3, 4), x)) ==
            "HypergeometricPFQ[{1, 2, 3}, {3, 4}, x]")

    assert mcode(Min(x, y)) == "Min[x, y]"
    assert mcode(Max(x, y)) == "Max[x, y]"
    assert mcode(Max(x, 2)) == "Max[2, x]"  # issue sympy/sympy#15344

    assert mcode(binomial(x, y)) == "Binomial[x, y]"

    assert mcode(log(x)) == "Log[x]"
    assert mcode(tan(x)) == "Tan[x]"
    assert mcode(cot(x)) == "Cot[x]"
    assert mcode(asin(x)) == "ArcSin[x]"
    assert mcode(acos(x)) == "ArcCos[x]"
    assert mcode(atan(x)) == "ArcTan[x]"
    assert mcode(sinh(x)) == "Sinh[x]"
    assert mcode(cosh(x)) == "Cosh[x]"
    assert mcode(tanh(x)) == "Tanh[x]"
    assert mcode(coth(x)) == "Coth[x]"
    assert mcode(sech(x)) == "Sech[x]"
    assert mcode(csch(x)) == "Csch[x]"
    assert mcode(erfc(x)) == "Erfc[x]"
    assert mcode(conjugate(x)) == "Conjugate[x]"
    assert mcode(re(x)) == "Re[x]"
    assert mcode(im(x)) == "Im[x]"
    assert mcode(polygamma(x, y)) == "PolyGamma[x, y]"
    assert mcode(factorial(x)) == "Factorial[x]"
    assert mcode(factorial2(x)) == "Factorial2[x]"
    assert mcode(rf(x, y)) == "Pochhammer[x, y]"
    assert mcode(gamma(x)) == "Gamma[x]"
    assert mcode(zeta(x)) == "Zeta[x]"
    assert mcode(asinh(x)) == "ArcSinh[x]"
    assert mcode(Heaviside(x)) == "UnitStep[x]"
    assert mcode(fibonacci(x)) == "Fibonacci[x]"
    assert mcode(polylog(x, y)) == "PolyLog[x, y]"
    assert mcode(atanh(x)) == "ArcTanh[x]"

    class myfunc1(Function):
        @classmethod
        def eval(cls, x):
            pass

    class myfunc2(Function):
        @classmethod
        def eval(cls, x, y):
            pass

    pytest.raises(ValueError,
                  lambda: mcode(myfunc1(x),
                                user_functions={"myfunc1": ["Myfunc1"]}))
    assert mcode(myfunc1(x),
                 user_functions={"myfunc1": "Myfunc1"}) == "Myfunc1[x]"
    assert mcode(myfunc2(x, y),
                 user_functions={"myfunc2": [(lambda *x: False,
                                              "Myfunc2")]}) == "myfunc2[x, y]"
Пример #8
0
def test_harmonic_rewrite_polygamma():
    n = Symbol("n")
    m = Symbol("m")

    assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma
    assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma
    assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma

    assert harmonic(n, 3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2
    assert harmonic(n, m).rewrite(polygamma) == (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1)

    assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
    assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n

    assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma).rewrite(gamma).rewrite("tractable")

    assert isinstance(expand_func(harmonic(n, 2)), harmonic)

    assert expand_func(harmonic(n + Rational(1, 2))) == expand_func(harmonic(n + Rational(1, 2)))
    assert expand_func(harmonic(Rational(-1, 2))) == harmonic(Rational(-1, 2))
    assert expand_func(harmonic(x)) == harmonic(x)