def test_simple_products(): assert product(2, (k, a, n)) == 2**(n - a + 1) assert product(k, (k, 1, n)) == factorial(n) assert product(k**3, (k, 1, n)) == factorial(n)**3 assert product(k + 1, (k, 0, n - 1)) == factorial(n) assert product(k + 1, (k, a, n - 1)) == rf(1 + a, n - a) assert product(cos(k), (k, 0, 5)) == cos(1) * cos(2) * cos(3) * cos(4) * cos(5) assert product(cos(k), (k, 3, 5)) == cos(3) * cos(4) * cos(5) assert product(cos(k), (k, 1, Rational(5, 2))) != cos(1) * cos(2) assert isinstance(product(k**k, (k, 1, n)), Product) assert Product(x**k, (k, 1, n)).variables == [k] pytest.raises(ValueError, lambda: Product(n)) pytest.raises(ValueError, lambda: Product(n * k)) pytest.raises(ValueError, lambda: Product(n, k)) pytest.raises(ValueError, lambda: Product(n, k, 1)) pytest.raises(ValueError, lambda: Product(n, k, 1, 10)) pytest.raises(ValueError, lambda: Product(n, (k, 1))) assert product(1, (n, 1, oo)) == 1 # issue sympy/sympy#8301 assert product(2, (n, 1, oo)) == oo assert isinstance(product(-1, (n, 1, oo)), Product) assert product(Kd(n, m), (m, 1, 3)) == 0 assert product(Kd(n, m), (m, 1, 1)) == Kd(n, 1)
def test_deltasummation_trivial(): assert ds(x, (j, 1, 0)) == 0 assert ds(x, (j, 1, 3)) == 3 * x assert ds(x + y, (j, 1, 3)) == 3 * (x + y) assert ds(x * y, (j, 1, 3)) == 3 * x * y assert ds(Kd(i, j), (k, 1, 3)) == 3 * Kd(i, j) assert ds(x * Kd(i, j), (k, 1, 3)) == 3 * x * Kd(i, j) assert ds(x * y * Kd(i, j), (k, 1, 3)) == 3 * x * y * Kd(i, j)
def test_deltaproduct_trivial(): assert dp(x, (j, 1, 0)) == 1 assert dp(x, (j, 1, 3)) == x**3 assert dp(x + y, (j, 1, 3)) == (x + y)**3 assert dp(x * y, (j, 1, 3)) == (x * y)**3 assert dp(Kd(i, j), (k, 1, 3)) == Kd(i, j) assert dp(x * Kd(i, j), (k, 1, 3)) == x**3 * Kd(i, j) assert dp(x * y * Kd(i, j), (k, 1, 3)) == (x * y)**3 * Kd(i, j)
def test_deltasummation_mul_x_kd(): assert ds(x*Kd(i, j), (j, 1, 3)) == \ Piecewise((x, And(Integer(1) <= i, i <= 3)), (0, True)) assert ds(x * Kd(i, j), (j, 1, 1)) == Piecewise((x, Eq(i, 1)), (0, True)) assert ds(x * Kd(i, j), (j, 2, 2)) == Piecewise((x, Eq(i, 2)), (0, True)) assert ds(x * Kd(i, j), (j, 3, 3)) == Piecewise((x, Eq(i, 3)), (0, True)) assert ds(x*Kd(i, j), (j, 1, k)) == \ Piecewise((x, And(Integer(1) <= i, i <= k)), (0, True)) assert ds(x*Kd(i, j), (j, k, 3)) == \ Piecewise((x, And(k <= i, i <= 3)), (0, True)) assert ds(x*Kd(i, j), (j, k, l)) == \ Piecewise((x, And(k <= i, i <= l)), (0, True))
def test_deltasummation_mul_x_add_y_kd(): assert ds(x*(y + Kd(i, j)), (j, 1, 3)) == \ Piecewise((3*x*y + x, And(Integer(1) <= i, i <= 3)), (3*x*y, True)) assert ds(x*(y + Kd(i, j)), (j, 1, 1)) == \ Piecewise((x*y + x, Eq(i, 1)), (x*y, True)) assert ds(x*(y + Kd(i, j)), (j, 2, 2)) == \ Piecewise((x*y + x, Eq(i, 2)), (x*y, True)) assert ds(x*(y + Kd(i, j)), (j, 3, 3)) == \ Piecewise((x*y + x, Eq(i, 3)), (x*y, True)) assert ds(x*(y + Kd(i, j)), (j, 1, k)) == \ Piecewise((k*x*y + x, And(Integer(1) <= i, i <= k)), (k*x*y, True)) assert ds(x*(y + Kd(i, j)), (j, k, 3)) == \ Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True)) assert ds(x * (y + Kd(i, j)), (j, k, l)) == Piecewise( ((l - k + 1) * x * y + x, And(k <= i, i <= l)), ((l - k + 1) * x * y, True))
def test_deltaproduct_mul_add_x_y_add_kd_kd(): assert dp((x + y) * (Kd(i, k) + Kd(j, k)), (k, 1, 3)) == 0 assert dp((x + y)*(Kd(i, k) + Kd(j, k)), (k, 1, 1)) == \ (x + y)*(Kd(i, 1) + Kd(j, 1)) assert dp((x + y)*(Kd(i, k) + Kd(j, k)), (k, 2, 2)) == \ (x + y)*(Kd(i, 2) + Kd(j, 2)) assert dp((x + y)*(Kd(i, k) + Kd(j, k)), (k, 3, 3)) == \ (x + y)*(Kd(i, 3) + Kd(j, 3)) assert dp((x + y)*(Kd(i, k) + Kd(j, k)), (k, 1, l)) == Kd(l, 0) + \ (x + y)*Kd(i, 1)*Kd(l, 1) + (x + y)*Kd(j, 1)*Kd(l, 1) + \ (x + y)**2*Kd(i, 1)*Kd(j, 2)*Kd(l, 2) + \ (x + y)**2*Kd(j, 1)*Kd(i, 2)*Kd(l, 2) assert dp((x + y)*(Kd(i, k) + Kd(j, k)), (k, l, 3)) == Kd(l, 4) + \ (x + y)*Kd(i, 3)*Kd(l, 3) + (x + y)*Kd(j, 3)*Kd(l, 3) + \ (x + y)**2*Kd(i, 2)*Kd(j, 3)*Kd(l, 2) + \ (x + y)**2*Kd(i, 3)*Kd(j, 2)*Kd(l, 2) assert dp((x + y)*(Kd(i, k) + Kd(j, k)), (k, l, m)) == Kd(l, m + 1) + \ (x + y)*Kd(i, m)*Kd(l, m) + (x + y)*Kd(j, m)*Kd(l, m) + \ (x + y)**2*Kd(i, m - 1)*Kd(j, m)*Kd(l, m - 1) + \ (x + y)**2*Kd(i, m)*Kd(j, m - 1)*Kd(l, m - 1)
def test_deltaproduct_add_kd_kd(): assert dp(Kd(i, k) + Kd(j, k), (k, 1, 3)) == 0 assert dp(Kd(i, k) + Kd(j, k), (k, 1, 1)) == Kd(i, 1) + Kd(j, 1) assert dp(Kd(i, k) + Kd(j, k), (k, 2, 2)) == Kd(i, 2) + Kd(j, 2) assert dp(Kd(i, k) + Kd(j, k), (k, 3, 3)) == Kd(i, 3) + Kd(j, 3) assert dp(Kd(i, k) + Kd(j, k), (k, 1, l)) == Kd(l, 0) + \ Kd(i, 1)*Kd(l, 1) + Kd(j, 1)*Kd(l, 1) + \ Kd(i, 1)*Kd(j, 2)*Kd(l, 2) + Kd(j, 1)*Kd(i, 2)*Kd(l, 2) assert dp(Kd(i, k) + Kd(j, k), (k, l, 3)) == Kd(l, 4) + \ Kd(i, 3)*Kd(l, 3) + Kd(j, 3)*Kd(l, 3) + \ Kd(i, 2)*Kd(j, 3)*Kd(l, 2) + Kd(i, 3)*Kd(j, 2)*Kd(l, 2) assert dp(Kd(i, k) + Kd(j, k), (k, l, m)) == Kd(l, m + 1) + \ Kd(i, m)*Kd(l, m) + Kd(j, m)*Kd(l, m) + \ Kd(i, m)*Kd(j, m - 1)*Kd(l, m - 1) + Kd(i, m - 1)*Kd(j, m)*Kd(l, m - 1)
def test_deltasummation_mul_add_x_kd_add_y_kd(): assert ds((x + Kd(i, k)) * (y + Kd(i, j)), (j, 1, 3)) == piecewise_fold( Piecewise((Kd(i, k) + x, And(Integer(1) <= i, i <= 3)), (0, True)) + 3 * (Kd(i, k) + x) * y) assert ds((x + Kd(i, k)) * (y + Kd(i, j)), (j, 1, 1)) == piecewise_fold( Piecewise((Kd(i, k) + x, Eq(i, 1)), (0, True)) + (Kd(i, k) + x) * y) assert ds((x + Kd(i, k)) * (y + Kd(i, j)), (j, 2, 2)) == piecewise_fold( Piecewise((Kd(i, k) + x, Eq(i, 2)), (0, True)) + (Kd(i, k) + x) * y) assert ds((x + Kd(i, k)) * (y + Kd(i, j)), (j, 3, 3)) == piecewise_fold( Piecewise((Kd(i, k) + x, Eq(i, 3)), (0, True)) + (Kd(i, k) + x) * y) assert ds((x + Kd(i, k)) * (y + Kd(i, j)), (j, 1, k)) == piecewise_fold( Piecewise((Kd(i, k) + x, And(Integer(1) <= i, i <= k)), (0, True)) + k * (Kd(i, k) + x) * y) assert ds((x + Kd(i, k)) * (y + Kd(i, j)), (j, k, 3)) == piecewise_fold( Piecewise((Kd(i, k) + x, And(k <= i, i <= 3)), (0, True)) + (4 - k) * (Kd(i, k) + x) * y) assert ds((x + Kd(i, k)) * (y + Kd(i, j)), (j, k, l)) == piecewise_fold( Piecewise((Kd(i, k) + x, And(k <= i, i <= l)), (0, True)) + (l - k + 1) * (Kd(i, k) + x) * y)
def test_deltaproduct_mul_add_x_y_kd(): assert dp((x + y) * Kd(i, j), (j, 1, 3)) == 0 assert dp((x + y) * Kd(i, j), (j, 1, 1)) == (x + y) * Kd(i, 1) assert dp((x + y) * Kd(i, j), (j, 2, 2)) == (x + y) * Kd(i, 2) assert dp((x + y) * Kd(i, j), (j, 3, 3)) == (x + y) * Kd(i, 3) assert dp((x + y)*Kd(i, j), (j, 1, k)) == \ (x + y)*Kd(i, 1)*Kd(k, 1) + Kd(k, 0) assert dp((x + y)*Kd(i, j), (j, k, 3)) == \ (x + y)*Kd(i, 3)*Kd(k, 3) + Kd(k, 4) assert dp((x + y)*Kd(i, j), (j, k, l)) == \ (x + y)*Kd(i, l)*Kd(k, l) + Kd(k, l + 1)
def test_deltasummation_mul_add_x_y_add_kd_kd(): assert ds((x + y) * (Kd(i, k) + Kd(j, k)), (k, 1, 3)) == piecewise_fold( Piecewise((x + y, And(Integer(1) <= i, i <= 3)), (0, True)) + Piecewise((x + y, And(Integer(1) <= j, j <= 3)), (0, True))) assert ds((x + y) * (Kd(i, k) + Kd(j, k)), (k, 1, 1)) == piecewise_fold( Piecewise((x + y, Eq(i, 1)), (0, True)) + Piecewise((x + y, Eq(j, 1)), (0, True))) assert ds((x + y) * (Kd(i, k) + Kd(j, k)), (k, 2, 2)) == piecewise_fold( Piecewise((x + y, Eq(i, 2)), (0, True)) + Piecewise((x + y, Eq(j, 2)), (0, True))) assert ds((x + y) * (Kd(i, k) + Kd(j, k)), (k, 3, 3)) == piecewise_fold( Piecewise((x + y, Eq(i, 3)), (0, True)) + Piecewise((x + y, Eq(j, 3)), (0, True))) assert ds((x + y) * (Kd(i, k) + Kd(j, k)), (k, 1, l)) == piecewise_fold( Piecewise((x + y, And(Integer(1) <= i, i <= l)), (0, True)) + Piecewise((x + y, And(Integer(1) <= j, j <= l)), (0, True))) assert ds((x + y) * (Kd(i, k) + Kd(j, k)), (k, l, 3)) == piecewise_fold( Piecewise((x + y, And(l <= i, i <= 3)), (0, True)) + Piecewise((x + y, And(l <= j, j <= 3)), (0, True))) assert ds((x + y) * (Kd(i, k) + Kd(j, k)), (k, l, m)) == piecewise_fold( Piecewise((x + y, And(l <= i, i <= m)), (0, True)) + Piecewise((x + y, And(l <= j, j <= m)), (0, True)))
def test_deltasummation_basic_symbolic(): assert ds(Kd(exp(i), 0), (i, 1, 3)) == 0 assert ds(Kd(exp(i), 0), (i, -1, 3)) == 0 assert ds(Kd(exp(i), 1), (i, 0, 3)) == 1 assert ds(Kd(exp(i), 1), (i, 1, 3)) == 0 assert ds(Kd(exp(i), 1), (i, -10, 3)) == 1 assert ds(Kd(i, j), (j, 1, 3)) == \ Piecewise((1, And(Integer(1) <= i, i <= 3)), (0, True)) assert ds(Kd(i, j), (j, 1, 1)) == Piecewise((1, Eq(i, 1)), (0, True)) assert ds(Kd(i, j), (j, 2, 2)) == Piecewise((1, Eq(i, 2)), (0, True)) assert ds(Kd(i, j), (j, 3, 3)) == Piecewise((1, Eq(i, 3)), (0, True)) assert ds(Kd(i, j), (j, 1, k)) == \ Piecewise((1, And(Integer(1) <= i, i <= k)), (0, True)) assert ds(Kd(i, j), (j, k, 3)) == \ Piecewise((1, And(k <= i, i <= 3)), (0, True)) assert ds(Kd(i, j), (j, k, l)) == \ Piecewise((1, And(k <= i, i <= l)), (0, True))
def test_deltasummation_basic_numerical(): n = symbols('n', integer=True, nonzero=True) assert ds(Kd(n, 0), (n, 1, 3)) == 0 # return unevaluated, until it gets implemented assert ds(Kd(i**2, j**2), (j, -oo, oo)) == \ Sum(Kd(i**2, j**2), (j, -oo, oo)) assert Piecewise((Kd(i, k), And(Integer(1) <= i, i <= 3)), (0, True)) == \ ds(Kd(i, j)*Kd(j, k), (j, 1, 3)) == \ ds(Kd(j, k)*Kd(i, j), (j, 1, 3)) assert ds(Kd(i, k), (k, -oo, oo)) == 1 assert ds(Kd(i, k), (k, 0, oo)) == Piecewise((1, Integer(0) <= i), (0, True)) assert ds(Kd(i, k), (k, 1, 3)) == \ Piecewise((1, And(Integer(1) <= i, i <= 3)), (0, True)) assert ds(k * Kd(i, j) * Kd(j, k), (k, -oo, oo)) == j * Kd(i, j) assert ds(j * Kd(i, j), (j, -oo, oo)) == i assert ds(i * Kd(i, j), (i, -oo, oo)) == j assert ds(x, (i, 1, 3)) == 3 * x assert ds((i + j) * Kd(i, j), (j, -oo, oo)) == 2 * i
def test_deltaproduct_basic(): assert dp(Kd(i, j), (j, 1, 3)) == 0 assert dp(Kd(i, j), (j, 1, 1)) == Kd(i, 1) assert dp(Kd(i, j), (j, 2, 2)) == Kd(i, 2) assert dp(Kd(i, j), (j, 3, 3)) == Kd(i, 3) assert dp(Kd(i, j), (j, 1, k)) == Kd(i, 1) * Kd(k, 1) + Kd(k, 0) assert dp(Kd(i, j), (j, k, 3)) == Kd(i, 3) * Kd(k, 3) + Kd(k, 4) assert dp(Kd(i, j), (j, k, l)) == Kd(i, l) * Kd(k, l) + Kd(k, l + 1) assert dp(Kd(i, 1), (i, j**2, k**2)) == (Kd(1, j**2) * Kd(j**2, k**2) + Kd(k**2, j**2 - 1))
def test_deltaproduct_mul_add_x_kd_add_y_kd(): assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 1, 3)) == \ Kd(i, 1)*(Kd(i, k) + x)*((Kd(i, k) + x)*y)**2 + \ Kd(i, 2)*(Kd(i, k) + x)*y*(Kd(i, k) + x)**2*y + \ Kd(i, 3)*((Kd(i, k) + x)*y)**2*(Kd(i, k) + x) + \ ((Kd(i, k) + x)*y)**3 assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 1, 1)) == \ (x + Kd(i, k))*(y + Kd(i, 1)) assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 2, 2)) == \ (x + Kd(i, k))*(y + Kd(i, 2)) assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 3, 3)) == \ (x + Kd(i, k))*(y + Kd(i, 3)) assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 1, k)) == \ ((x + Kd(i, k))*y)**k + Piecewise( (((x + Kd(i, k))*y)**(i - 1)*(x + Kd(i, k)) * ((x + Kd(i, k))*y)**(-i + k), And(Integer(1) <= i, i <= k)), (0, True) ) assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, k, 3)) == \ ((x + Kd(i, k))*y)**(4 - k) + Piecewise( (((x + Kd(i, k))*y)**(i - k)*(x + Kd(i, k)) * ((x + Kd(i, k))*y)**(-i + 3), And(k <= i, i <= 3)), (0, True) ) assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, k, l)) == \ ((x + Kd(i, k))*y)**(-k + l + 1) + Piecewise( (((x + Kd(i, k))*y)**(i - k)*(x + Kd(i, k)) * ((x + Kd(i, k))*y)**(-i + l), And(k <= i, i <= l)), (0, True) )
def test_deltaproduct_mul_add_x_y_add_y_kd(): assert dp((x + y)*(y + Kd(i, j)), (j, 1, 3)) == ((x + y)*y)**3 + \ (x + y)*((x + y)*y)**2*Kd(i, 1) + \ (x + y)*y*(x + y)**2*y*Kd(i, 2) + \ ((x + y)*y)**2*(x + y)*Kd(i, 3) assert dp((x + y) * (y + Kd(i, j)), (j, 1, 1)) == (x + y) * (y + Kd(i, 1)) assert dp((x + y) * (y + Kd(i, j)), (j, 2, 2)) == (x + y) * (y + Kd(i, 2)) assert dp((x + y) * (y + Kd(i, j)), (j, 3, 3)) == (x + y) * (y + Kd(i, 3)) assert dp((x + y)*(y + Kd(i, j)), (j, 1, k)) == \ ((x + y)*y)**k + Piecewise( (((x + y)*y)**(i - 1)*(x + y)*((x + y)*y)**(k - i), And(Integer(1) <= i, i <= k)), (0, True) ) assert dp((x + y)*(y + Kd(i, j)), (j, k, 3)) == \ ((x + y)*y)**(-k + 4) + Piecewise( (((x + y)*y)**(i - k)*(x + y)*((x + y)*y)**(3 - i), And(k <= i, i <= 3)), (0, True) ) assert dp((x + y)*(y + Kd(i, j)), (j, k, l)) == \ ((x + y)*y)**(-k + l + 1) + Piecewise( (((x + y)*y)**(i - k)*(x + y)*((x + y)*y)**(l - i), And(k <= i, i <= l)), (0, True) )
def test_deltaproduct_mul_x_add_y_twokd(): assert dp(x*(y + 2*Kd(i, j)), (j, 1, 3)) == (x*y)**3 + \ 2*x*(x*y)**2*Kd(i, 1) + 2*x*y*x*x*y*Kd(i, 2) + 2*(x*y)**2*x*Kd(i, 3) assert dp(x * (y + 2 * Kd(i, j)), (j, 1, 1)) == x * (y + 2 * Kd(i, 1)) assert dp(x * (y + 2 * Kd(i, j)), (j, 2, 2)) == x * (y + 2 * Kd(i, 2)) assert dp(x * (y + 2 * Kd(i, j)), (j, 3, 3)) == x * (y + 2 * Kd(i, 3)) assert dp(x*(y + 2*Kd(i, j)), (j, 1, k)) == \ (x*y)**k + Piecewise( (2*(x*y)**(i - 1)*x*(x*y)**(k - i), And(Integer(1) <= i, i <= k)), (0, True) ) assert dp(x*(y + 2*Kd(i, j)), (j, k, 3)) == \ (x*y)**(-k + 4) + Piecewise( (2*(x*y)**(i - k)*x*(x*y)**(3 - i), And(k <= i, i <= 3)), (0, True) ) assert dp(x*(y + 2*Kd(i, j)), (j, k, l)) == \ (x*y)**(-k + l + 1) + Piecewise( (2*(x*y)**(i - k)*x*(x*y)**(l - i), And(k <= i, i <= l)), (0, True) )