Пример #1
0
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
    """Wang/EEZ: Parallel Hensel lifting algorithm. """
    S, n, v = [f], len(A), u - 1

    H = list(H)

    for i, a in enumerate(reversed(A[1:])):
        s = dmp_eval_in(S[0], a, n - i, u - i, K)
        S.insert(0, dmp_ground_trunc(s, p, v - i, K))

    d = max(dmp_degree_list(f, u)[1:])

    for j, s, a in zip(range(2, n + 2), S, A):
        G, w = list(H), j - 1

        I, J = A[:j - 2], A[j - 1:]

        for i, (h, lc) in enumerate(zip(H, LC)):
            lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w - 1, K)
            H[i] = [lc] + dmp_raise(h[1:], 1, w - 1, K)

        m = dmp_nest([K.one, -a], w, K)
        M = dmp_one(w, K)

        c = dmp_sub(s, dmp_expand(H, w, K), w, K)

        dj = dmp_degree_in(s, w, w)

        for k in K.map(range(0, dj)):
            if dmp_zero_p(c, w):
                break

            M = dmp_mul(M, m, w, K)
            C = dmp_diff_eval_in(c, k + 1, a, w, w, K)

            if not dmp_zero_p(C, w - 1):
                C = dmp_quo_ground(C, K.factorial(k + 1), w - 1, K)
                T = dmp_zz_diophantine(G, C, I, d, p, w - 1, K)

                for i, (h, t) in enumerate(zip(H, T)):
                    h = dmp_add_mul(h, dmp_raise(t, 1, w - 1, K), M, w, K)
                    H[i] = dmp_ground_trunc(h, p, w, K)

                h = dmp_sub(s, dmp_expand(H, w, K), w, K)
                c = dmp_ground_trunc(h, p, w, K)

    if dmp_expand(H, u, K) != f:
        raise ExtraneousFactors  # pragma: no cover
    else:
        return H
Пример #2
0
def dmp_lift(f, u, K):
    """
    Convert algebraic coefficients to integers in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, QQ
    >>> from diofant import I

    >>> K = QQ.algebraic_field(I)
    >>> R, x = ring("x", K)

    >>> f = x**2 + K([QQ(1), QQ(0)])*x + K([QQ(2), QQ(0)])

    >>> R.dmp_lift(f)
    x**8 + 2*x**6 + 9*x**4 - 8*x**2 + 16
    """
    if not K.is_Algebraic:
        raise DomainError(
            'computation can be done only in an algebraic domain')

    F, monoms, polys = dmp_to_dict(f, u), [], []

    for monom, coeff in F.items():
        if not coeff.is_ground:
            monoms.append(monom)

    perms = variations([-1, 1], len(monoms), repetition=True)

    for perm in perms:
        G = dict(F)

        for sign, monom in zip(perm, monoms):
            if sign == -1:
                G[monom] = -G[monom]

        polys.append(dmp_from_dict(G, u, K))

    return dmp_convert(dmp_expand(polys, u, K), u, K, K.domain)
Пример #3
0
def test_dmp_expand():
    assert dmp_expand((), 1, ZZ) == [[1]]
    assert dmp_expand(([[1], [2], [3]], [[1], [2]], [[7], [5], [4], [3]]), 1, ZZ) == \
        dmp_mul([[1], [2], [3]], dmp_mul([[1], [2]], [[7], [5], [
                4], [3]], 1, ZZ), 1, ZZ)
Пример #4
0
def dmp_zz_diophantine(F, c, A, d, p, u, K):
    """Wang/EEZ: Solve multivariate Diophantine equations. """
    if not A:
        S = [[] for _ in F]
        n = dup_degree(c)

        for i, coeff in enumerate(c):
            if not coeff:
                continue

            T = dup_zz_diophantine(F, n - i, p, K)

            for j, (s, t) in enumerate(zip(S, T)):
                t = dup_mul_ground(t, coeff, K)
                S[j] = dup_trunc(dup_add(s, t, K), p, K)
    else:
        n = len(A)
        e = dmp_expand(F, u, K)

        a, A = A[-1], A[:-1]
        B, G = [], []

        for f in F:
            B.append(dmp_quo(e, f, u, K))
            G.append(dmp_eval_in(f, a, n, u, K))

        C = dmp_eval_in(c, a, n, u, K)

        v = u - 1

        S = dmp_zz_diophantine(G, C, A, d, p, v, K)
        S = [dmp_raise(s, 1, v, K) for s in S]

        for s, b in zip(S, B):
            c = dmp_sub_mul(c, s, b, u, K)

        c = dmp_ground_trunc(c, p, u, K)

        m = dmp_nest([K.one, -a], n, K)
        M = dmp_one(n, K)

        for k in K.map(range(0, d)):
            if dmp_zero_p(c, u):
                break

            M = dmp_mul(M, m, u, K)
            C = dmp_diff_eval_in(c, k + 1, a, n, u, K)

            if not dmp_zero_p(C, v):
                C = dmp_quo_ground(C, K.factorial(k + 1), v, K)
                T = dmp_zz_diophantine(G, C, A, d, p, v, K)

                for i, t in enumerate(T):
                    T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)

                for i, (s, t) in enumerate(zip(S, T)):
                    S[i] = dmp_add(s, t, u, K)

                for t, b in zip(T, B):
                    c = dmp_sub_mul(c, t, b, u, K)

                c = dmp_ground_trunc(c, p, u, K)

        S = [dmp_ground_trunc(s, p, u, K) for s in S]

    return S