def dup_transform(f, p, q, K): """ Evaluate functional transformation ``q**n * f(p/q)`` in ``K[x]``. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_transform(x**2 - 2*x + 1, x**2 + 1, x - 1) x**4 - 2*x**3 + 5*x**2 - 4*x + 4 """ if not f: return [] n = len(f) - 1 h, Q = [f[0]], [[K.one]] for i in range(0, n): Q.append(dup_mul(Q[-1], q, K)) for c, q in zip(f[1:], Q[1:]): h = dup_mul(h, p, K) q = dup_mul_ground(q, c, K) h = dup_add(h, q, K) return h
def dup_compose(f, g, K): """ Evaluate functional composition ``f(g)`` in ``K[x]``. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_compose(x**2 + x, x - 1) x**2 - x """ if len(g) <= 1: return dup_strip([dup_eval(f, dup_LC(g, K), K)]) if not f: return [] h = [f[0]] for c in f[1:]: h = dup_mul(h, g, K) h = dup_add_term(h, c, 0, K) return h
def dup_gff_list(f, K): """ Compute greatest factorial factorization of ``f`` in ``K[x]``. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2) [(x, 1), (x + 2, 4)] """ if not f: raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial") f = dup_monic(f, K) if not dup_degree(f): return [] else: g = dup_gcd(f, dup_shift(f, K.one, K), K) H = dup_gff_list(g, K) for i, (h, k) in enumerate(H): g = dup_mul(g, dup_shift(h, -K(k), K), K) H[i] = (h, k + 1) f = dup_quo(f, g, K) if not dup_degree(f): return H else: return [(f, 1)] + H
def dup_revert(f, n, K): """ Compute ``f**(-1)`` mod ``x**n`` using Newton iteration. This function computes first ``2**n`` terms of a polynomial that is a result of inversion of a polynomial modulo ``x**n``. This is useful to efficiently compute series expansion of ``1/f``. Examples ======== >>> from diofant.polys import ring, QQ >>> R, x = ring("x", QQ) >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1 >>> R.dup_revert(f, 8) 61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1 """ g = [K.revert(dup_TC(f, K))] h = [K.one, K.zero, K.zero] N = int(_ceil(_log(n, 2))) for i in range(1, N + 1): a = dup_mul_ground(g, K(2), K) b = dup_mul(f, dup_sqr(g, K), K) g = dup_rem(dup_sub(a, b, K), h, K) h = dup_lshift(h, dup_degree(h), K) return g
def dup_zz_hensel_step(m, f, g, h, s, t, K): """ One step in Hensel lifting in `Z[x]`. Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s` and `t` such that:: f == g*h (mod m) s*g + t*h == 1 (mod m) lc(f) is not a zero divisor (mod m) lc(h) == 1 deg(f) == deg(g) + deg(h) deg(s) < deg(h) deg(t) < deg(g) returns polynomials `G`, `H`, `S` and `T`, such that:: f == G*H (mod m**2) S*G + T**H == 1 (mod m**2) References ========== .. [1] [Gathen99]_ """ M = m**2 e = dup_sub_mul(f, g, h, K) e = dup_trunc(e, M, K) q, r = dup_div(dup_mul(s, e, K), h, K) q = dup_trunc(q, M, K) r = dup_trunc(r, M, K) u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K) G = dup_trunc(dup_add(g, u, K), M, K) H = dup_trunc(dup_add(h, r, K), M, K) u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K) b = dup_trunc(dup_sub(u, [K.one], K), M, K) c, d = dup_div(dup_mul(s, b, K), H, K) c = dup_trunc(c, M, K) d = dup_trunc(d, M, K) u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K) S = dup_trunc(dup_sub(s, d, K), M, K) T = dup_trunc(dup_sub(t, u, K), M, K) return G, H, S, T
def dup_laguerre(n, alpha, K): """Low-level implementation of Laguerre polynomials. """ seq = [[K.zero], [K.one]] for i in range(1, n + 1): a = dup_mul(seq[-1], [-K.one / i, alpha / i + K(2 * i - 1) / i], K) b = dup_mul_ground(seq[-2], alpha / i + K(i - 1) / i, K) seq.append(dup_sub(a, b, K)) return seq[-1]
def test_dmp_mul(): assert dmp_mul([ZZ(5)], [ZZ(7)], 0, ZZ) == \ dup_mul([ZZ(5)], [ZZ(7)], ZZ) assert dmp_mul([QQ(5, 7)], [QQ(3, 7)], 0, QQ) == \ dup_mul([QQ(5, 7)], [QQ(3, 7)], QQ) assert dmp_mul([[[]]], [[[]]], 2, ZZ) == [[[]]] assert dmp_mul([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[]]] assert dmp_mul([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[]]] assert dmp_mul([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(2)]]] assert dmp_mul([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(2)]]] assert dmp_mul([[[]]], [[[]]], 2, QQ) == [[[]]] assert dmp_mul([[[QQ(1, 2)]]], [[[]]], 2, QQ) == [[[]]] assert dmp_mul([[[]]], [[[QQ(1, 2)]]], 2, QQ) == [[[]]] assert dmp_mul([[[QQ(2, 7)]]], [[[QQ(1, 3)]]], 2, QQ) == [[[QQ(2, 21)]]] assert dmp_mul([[[QQ(1, 7)]]], [[[QQ(2, 3)]]], 2, QQ) == [[[QQ(2, 21)]]] K = FF(6) assert dmp_mul([[K(2)], [K(1)]], [[K(3)], [K(4)]], 1, K) == [[K(5)], [K(4)]]
def dup_zz_diophantine(F, m, p, K): """Wang/EEZ: Solve univariate Diophantine equations. """ if len(F) == 2: a, b = F f = gf_from_int_poly(a, p) g = gf_from_int_poly(b, p) s, t, G = gf_gcdex(g, f, p, K) s = gf_lshift(s, m, K) t = gf_lshift(t, m, K) q, s = gf_div(s, f, p, K) t = gf_add_mul(t, q, g, p, K) s = gf_to_int_poly(s, p) t = gf_to_int_poly(t, p) result = [s, t] else: G = [F[-1]] for f in reversed(F[1:-1]): G.insert(0, dup_mul(f, G[0], K)) S, T = [], [[1]] for f, g in zip(F, G): t, s = dmp_zz_diophantine([g, f], T[-1], [], 0, p, 1, K) T.append(t) S.append(s) result, S = [], S + [T[-1]] for s, f in zip(S, F): s = gf_from_int_poly(s, p) f = gf_from_int_poly(f, p) r = gf_rem(gf_lshift(s, m, K), f, p, K) s = gf_to_int_poly(r, p) result.append(s) return result
def dup_ff_lcm(f, g, K): """ Computes polynomial LCM over a field in `K[x]`. Examples ======== >>> from diofant.polys import ring, QQ >>> R, x = ring("x", QQ) >>> f = QQ(1,2)*x**2 + QQ(7,4)*x + QQ(3,2) >>> g = QQ(1,2)*x**2 + x >>> R.dup_ff_lcm(f, g) x**3 + 7/2*x**2 + 3*x """ h = dup_quo(dup_mul(f, g, K), dup_gcd(f, g, K), K) return dup_monic(h, K)
def dup_rr_lcm(f, g, K): """ Computes polynomial LCM over a ring in `K[x]`. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_rr_lcm(x**2 - 1, x**2 - 3*x + 2) x**3 - 2*x**2 - x + 2 """ fc, f = dup_primitive(f, K) gc, g = dup_primitive(g, K) c = K.lcm(fc, gc) h = dup_quo(dup_mul(f, g, K), dup_gcd(f, g, K), K) return dup_mul_ground(h, c, K)
def dmp_zz_modular_resultant(f, g, p, u, K): """ Compute resultant of `f` and `g` modulo a prime `p`. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> f = x + y + 2 >>> g = 2*x*y + x + 3 >>> R.dmp_zz_modular_resultant(f, g, 5) -2*y**2 + 1 """ if not u: return gf_int(dup_prs_resultant(f, g, K)[0] % p, p) v = u - 1 n = dmp_degree(f, u) m = dmp_degree(g, u) N = dmp_degree_in(f, 1, u) M = dmp_degree_in(g, 1, u) B = n * M + m * N D, a = [K.one], -K.one r = dmp_zero(v) while dup_degree(D) <= B: while True: a += K.one if a == p: raise HomomorphismFailed('no luck') F = dmp_eval_in(f, gf_int(a, p), 1, u, K) if dmp_degree(F, v) == n: G = dmp_eval_in(g, gf_int(a, p), 1, u, K) if dmp_degree(G, v) == m: break R = dmp_zz_modular_resultant(F, G, p, v, K) e = dmp_eval(r, a, v, K) if not v: R = dup_strip([R]) e = dup_strip([e]) else: R = [R] e = [e] d = K.invert(dup_eval(D, a, K), p) d = dup_mul_ground(D, d, K) d = dmp_raise(d, v, 0, K) c = dmp_mul(d, dmp_sub(R, e, v, K), v, K) r = dmp_add(r, c, v, K) r = dmp_ground_trunc(r, p, v, K) D = dup_mul(D, [K.one, -a], K) D = dup_trunc(D, p, K) return r
def test_dup_expand(): assert dup_expand((), ZZ) == [1] assert dup_expand(([1, 2, 3], [1, 2], [7, 5, 4, 3]), ZZ) == \ dup_mul([1, 2, 3], dup_mul([1, 2], [7, 5, 4, 3], ZZ), ZZ)
def test_dup_mul(): assert dup_mul([], [], ZZ) == [] assert dup_mul([], [ZZ(1)], ZZ) == [] assert dup_mul([ZZ(1)], [], ZZ) == [] assert dup_mul([ZZ(1)], [ZZ(1)], ZZ) == [ZZ(1)] assert dup_mul([ZZ(5)], [ZZ(7)], ZZ) == [ZZ(35)] assert dup_mul([], [], QQ) == [] assert dup_mul([], [QQ(1, 2)], QQ) == [] assert dup_mul([QQ(1, 2)], [], QQ) == [] assert dup_mul([QQ(1, 2)], [QQ(4, 7)], QQ) == [QQ(2, 7)] assert dup_mul([QQ(5, 7)], [QQ(3, 7)], QQ) == [QQ(15, 49)] f = dup_normal([3, 0, 0, 6, 1, 2], ZZ) g = dup_normal([4, 0, 1, 0], ZZ) h = dup_normal([12, 0, 3, 24, 4, 14, 1, 2, 0], ZZ) assert dup_mul(f, g, ZZ) == h assert dup_mul(g, f, ZZ) == h f = dup_normal([2, 0, 0, 1, 7], ZZ) h = dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ) assert dup_mul(f, f, ZZ) == h K = FF(6) assert dup_mul([K(2), K(1)], [K(3), K(4)], K) == [K(5), K(4)] p1 = dup_normal([ 79, -1, 78, -94, -10, 11, 32, -19, 78, 2, -89, 30, 73, 42, 85, 77, 83, -30, -34, -2, 95, -81, 37, -49, -46, -58, -16, 37, 35, -11, -57, -15, -31, 67, -20, 27, 76, 2, 70, 67, -65, 65, -26, -93, -44, -12, -92, 57, -90, -57, -11, -67, -98, -69, 97, -41, 89, 33, 89, -50, 81, -31, 60, -27, 43, 29, -77, 44, 21, -91, 32, -57, 33, 3, 53, -51, -38, -99, -84, 23, -50, 66, -100, 1, -75, -25, 27, -60, 98, -51, -87, 6, 8, 78, -28, -95, -88, 12, -35, 26, -9, 16, -92, 55, -7, -86, 68, -39, -46, 84, 94, 45, 60, 92, 68, -75, -74, -19, 8, 75, 78, 91, 57, 34, 14, -3, -49, 65, 78, -18, 6, -29, -80, -98, 17, 13, 58, 21, 20, 9, 37, 7, -30, -53, -20, 34, 67, -42, 89, -22, 73, 43, -6, 5, 51, -8, -15, -52, -22, -58, -72, -3, 43, -92, 82, 83, -2, -13, -23, -60, 16, -94, -8, -28, -95, -72, 63, -90, 76, 6, -43, -100, -59, 76, 3, 3, 46, -85, 75, 62, -71, -76, 88, 97, -72, -1, 30, -64, 72, -48, 14, -78, 58, 63, -91, 24, -87, -27, -80, -100, -44, 98, 70, 100, -29, -38, 11, 77, 100, 52, 86, 65, -5, -42, -81, -38, -42, 43, -2, -70, -63, -52 ], ZZ) p2 = dup_normal([ 65, -19, -47, 1, 90, 81, -15, -34, 25, -75, 9, -83, 50, -5, -44, 31, 1, 70, -7, 78, 74, 80, 85, 65, 21, 41, 66, 19, -40, 63, -21, -27, 32, 69, 83, 34, -35, 14, 81, 57, -75, 32, -67, -89, -100, -61, 46, 84, -78, -29, -50, -94, -24, -32, -68, -16, 100, -7, -72, -89, 35, 82, 58, 81, -92, 62, 5, -47, -39, -58, -72, -13, 84, 44, 55, -25, 48, -54, -31, -56, -11, -50, -84, 10, 67, 17, 13, -14, 61, 76, -64, -44, -40, -96, 11, -11, -94, 2, 6, 27, -6, 68, -54, 66, -74, -14, -1, -24, -73, 96, 89, -11, -89, 56, -53, 72, -43, 96, 25, 63, -31, 29, 68, 83, 91, -93, -19, -38, -40, 40, -12, -19, -79, 44, 100, -66, -29, -77, 62, 39, -8, 11, -97, 14, 87, 64, 21, -18, 13, 15, -59, -75, -99, -88, 57, 54, 56, -67, 6, -63, -59, -14, 28, 87, -20, -39, 84, -91, -2, 49, -75, 11, -24, -95, 36, 66, 5, 25, -72, -40, 86, 90, 37, -33, 57, -35, 29, -18, 4, -79, 64, -17, -27, 21, 29, -5, -44, -87, -24, 52, 78, 11, -23, -53, 36, 42, 21, -68, 94, -91, -51, -21, 51, -76, 72, 31, 24, -48, -80, -9, 37, -47, -6, -8, -63, -91, 79, -79, -100, 38, -20, 38, 100, 83, -90, 87, 63, -36, 82, -19, 18, -98, -38, 26, 98, -70, 79, 92, 12, 12, 70, 74, 36, 48, -13, 31, 31, -47, -71, -12, -64, 36, -42, 32, -86, 60, 83, 70, 55, 0, 1, 29, -35, 8, -82, 8, -73, -46, -50, 43, 48, -5, -86, -72, 44, -90, 19, 19, 5, -20, 97, -13, -66, -5, 5, -69, 64, -30, 41, 51, 36, 13, -99, -61, 94, -12, 74, 98, 68, 24, 46, -97, -87, -6, -27, 82, 62, -11, -77, 86, 66, -47, -49, -50, 13, 18, 89, -89, 46, -80, 13, 98, -35, -36, -25, 12, 20, 26, -52, 79, 27, 79, 100, 8, 62, -58, -28, 37 ], ZZ) res = dup_normal([ 5135, -1566, 1376, -7466, 4579, 11710, 8001, -7183, -3737, -7439, 345, -10084, 24522, -1201, 1070, -10245, 9582, 9264, 1903, 23312, 18953, 10037, -15268, -5450, 6442, -6243, -3777, 5110, 10936, -16649, -6022, 16255, 31300, 24818, 31922, 32760, 7854, 27080, 15766, 29596, 7139, 31945, -19810, 465, -38026, -3971, 9641, 465, -19375, 5524, -30112, -11960, -12813, 13535, 30670, 5925, -43725, -14089, 11503, -22782, 6371, 43881, 37465, -33529, -33590, -39798, -37854, -18466, -7908, -35825, -26020, -36923, -11332, -5699, 25166, -3147, 19885, 12962, -20659, -1642, 27723, -56331, -24580, -11010, -20206, 20087, -23772, -16038, 38580, 20901, -50731, 32037, -4299, 26508, 18038, -28357, 31846, -7405, -20172, -15894, 2096, 25110, -45786, 45918, -55333, -31928, -49428, -29824, -58796, -24609, -15408, 69, -35415, -18439, 10123, -20360, -65949, 33356, -20333, 26476, -32073, 33621, 930, 28803, -42791, 44716, 38164, 12302, -1739, 11421, 73385, -7613, 14297, 38155, -414, 77587, 24338, -21415, 29367, 42639, 13901, -288, 51027, -11827, 91260, 43407, 88521, -15186, 70572, -12049, 5090, -12208, -56374, 15520, -623, -7742, 50825, 11199, -14894, 40892, 59591, -31356, -28696, -57842, -87751, -33744, -28436, -28945, -40287, 37957, -35638, 33401, -61534, 14870, 40292, 70366, -10803, 102290, -71719, -85251, 7902, -22409, 75009, 99927, 35298, -1175, -762, -34744, -10587, -47574, -62629, -19581, -43659, -54369, -32250, -39545, 15225, -24454, 11241, -67308, -30148, 39929, 37639, 14383, -73475, -77636, -81048, -35992, 41601, -90143, 76937, -8112, 56588, 9124, -40094, -32340, 13253, 10898, -51639, 36390, 12086, -1885, 100714, -28561, -23784, -18735, 18916, 16286, 10742, -87360, -13697, 10689, -19477, -29770, 5060, 20189, -8297, 112407, 47071, 47743, 45519, -4109, 17468, -68831, 78325, -6481, -21641, -19459, 30919, 96115, 8607, 53341, 32105, -16211, 23538, 57259, -76272, -40583, 62093, 38511, -34255, -40665, -40604, -37606, -15274, 33156, -13885, 103636, 118678, -14101, -92682, -100791, 2634, 63791, 98266, 19286, -34590, -21067, -71130, 25380, -40839, -27614, -26060, 52358, -15537, 27138, -6749, 36269, -33306, 13207, -91084, -5540, -57116, 69548, 44169, -57742, -41234, -103327, -62904, -8566, 41149, -12866, 71188, 23980, 1838, 58230, 73950, 5594, 43113, -8159, -15925, 6911, 85598, -75016, -16214, -62726, -39016, 8618, -63882, -4299, 23182, 49959, 49342, -3238, -24913, -37138, 78361, 32451, 6337, -11438, -36241, -37737, 8169, -3077, -24829, 57953, 53016, -31511, -91168, 12599, -41849, 41576, 55275, -62539, 47814, -62319, 12300, -32076, -55137, -84881, -27546, 4312, -3433, -54382, 113288, -30157, 74469, 18219, 79880, -2124, 98911, 17655, -33499, -32861, 47242, -37393, 99765, 14831, -44483, 10800, -31617, -52710, 37406, 22105, 29704, -20050, 13778, 43683, 36628, 8494, 60964, -22644, 31550, -17693, 33805, -124879, -12302, 19343, 20400, -30937, -21574, -34037, -33380, 56539, -24993, -75513, -1527, 53563, 65407, -101, 53577, 37991, 18717, -23795, -8090, -47987, -94717, 41967, 5170, -14815, -94311, 17896, -17734, -57718, -774, -38410, 24830, 29682, 76480, 58802, -46416, -20348, -61353, -68225, -68306, 23822, -31598, 42972, 36327, 28968, -65638, -21638, 24354, -8356, 26777, 52982, -11783, -44051, -26467, -44721, -28435, -53265, -25574, -2669, 44155, 22946, -18454, -30718, -11252, 58420, 8711, 67447, 4425, 41749, 67543, 43162, 11793, -41907, 20477, -13080, 6559, -6104, -13244, 42853, 42935, 29793, 36730, -28087, 28657, 17946, 7503, 7204, 21491, -27450, -24241, -98156, -18082, -42613, -24928, 10775, -14842, -44127, 55910, 14777, 31151, -2194, 39206, -2100, -4211, 11827, -8918, -19471, 72567, 36447, -65590, -34861, -17147, -45303, 9025, -7333, -35473, 11101, 11638, 3441, 6626, -41800, 9416, 13679, 33508, 40502, -60542, 16358, 8392, -43242, -35864, -34127, -48721, 35878, 30598, 28630, 20279, -19983, -14638, -24455, -1851, -11344, 45150, 42051, 26034, -28889, -32382, -3527, -14532, 22564, -22346, 477, 11706, 28338, -25972, -9185, -22867, -12522, 32120, -4424, 11339, -33913, -7184, 5101, -23552, -17115, -31401, -6104, 21906, 25708, 8406, 6317, -7525, 5014, 20750, 20179, 22724, 11692, 13297, 2493, -253, -16841, -17339, -6753, -4808, 2976, -10881, -10228, -13816, -12686, 1385, 2316, 2190, -875, -1924 ], ZZ) assert dup_mul(p1, p2, ZZ) == res p1 = dup_normal([ 83, -61, -86, -24, 12, 43, -88, -9, 42, 55, -66, 74, 95, -25, -12, 68, -99, 4, 45, 6, -15, -19, 78, 65, -55, 47, -13, 17, 86, 81, -58, -27, 50, -40, -24, 39, -41, -92, 75, 90, -1, 40, -15, -27, -35, 68, 70, -64, -40, 78, -88, -58, -39, 69, 46, 12, 28, -94, -37, -50, -80, -96, -61, 25, 1, 71, 4, 12, 48, 4, 34, -47, -75, 5, 48, 82, 88, 23, 98, 35, 17, -10, 48, -61, -95, 47, 65, -19, -66, -57, -6, -51, -42, -89, 66, -13, 18, 37, 90, -23, 72, 96, -53, 0, 40, -73, -52, -68, 32, -25, -53, 79, -52, 18, 44, 73, -81, 31, -90, 70, 3, 36, 48, 76, -24, -44, 23, 98, -4, 73, 69, 88, -70, 14, -68, 94, -78, -15, -64, -97, -70, -35, 65, 88, 49, -53, -7, 12, -45, -7, 59, -94, 99, -2, 67, -60, -71, 29, -62, -77, 1, 51, 17, 80, -20, -47, -19, 24, -9, 39, -23, 21, -84, 10, 84, 56, -17, -21, -66, 85, 70, 46, -51, -22, -95, 78, -60, -96, -97, -45, 72, 35, 30, -61, -92, -93, -60, -61, 4, -4, -81, -73, 46, 53, -11, 26, 94, 45, 14, -78, 55, 84, -68, 98, 60, 23, 100, -63, 68, 96, -16, 3, 56, 21, -58, 62, -67, 66, 85, 41, -79, -22, 97, -67, 82, 82, -96, -20, -7, 48, -67, 48, -9, -39, 78 ], ZZ) p2 = dup_normal([ 52, 88, 76, 66, 9, -64, 46, -20, -28, 69, 60, 96, -36, -92, -30, -11, -35, 35, 55, 63, -92, -7, 25, -58, 74, 55, -6, 4, 47, -92, -65, 67, -45, 74, -76, 59, -6, 69, 39, 24, -71, -7, 39, -45, 60, -68, 98, 97, -79, 17, 4, 94, -64, 68, -100, -96, -2, 3, 22, 96, 54, -77, -86, 67, 6, 57, 37, 40, 89, -78, 64, -94, -45, -92, 57, 87, -26, 36, 19, 97, 25, 77, -87, 24, 43, -5, 35, 57, 83, 71, 35, 63, 61, 96, -22, 8, -1, 96, 43, 45, 94, -93, 36, 71, -41, -99, 85, -48, 59, 52, -17, 5, 87, -16, -68, -54, 76, -18, 100, 91, -42, -70, -66, -88, -12, 1, 95, -82, 52, 43, -29, 3, 12, 72, -99, -43, -32, -93, -51, 16, -20, -12, -11, 5, 33, -38, 93, -5, -74, 25, 74, -58, 93, 59, -63, -86, 63, -20, -4, -74, -73, -95, 29, -28, 93, -91, -2, -38, -62, 77, -58, -85, -28, 95, 38, 19, -69, 86, 94, 25, -2, -4, 47, 34, -59, 35, -48, 29, -63, -53, 34, 29, 66, 73, 6, 92, -84, 89, 15, 81, 93, 97, 51, -72, -78, 25, 60, 90, -45, 39, 67, -84, -62, 57, 26, -32, -56, -14, -83, 76, 5, -2, 99, -100, 28, 46, 94, -7, 53, -25, 16, -23, -36, 89, -78, -63, 31, 1, 84, -99, -52, 76, 48, 90, -76, 44, -19, 54, -36, -9, -73, -100, -69, 31, 42, 25, -39, 76, -26, -8, -14, 51, 3, 37, 45, 2, -54, 13, -34, -92, 17, -25, -65, 53, -63, 30, 4, -70, -67, 90, 52, 51, 18, -3, 31, -45, -9, 59, 63, -87, 22, -32, 29, -38, 21, 36, -82, 27, -11 ], ZZ) res = dup_normal([ 4316, 4132, -3532, -7974, -11303, -10069, 5484, -3330, -5874, 7734, 4673, 11327, -9884, -8031, 17343, 21035, -10570, -9285, 15893, 3780, -14083, 8819, 17592, 10159, 7174, -11587, 8598, -16479, 3602, 25596, 9781, 12163, 150, 18749, -21782, -12307, 27578, -2757, -12573, 12565, 6345, -18956, 19503, -15617, 1443, -16778, 36851, 23588, -28474, 5749, 40695, -7521, -53669, -2497, -18530, 6770, 57038, 3926, -6927, -15399, 1848, -64649, -27728, 3644, 49608, 15187, -8902, -9480, -7398, -40425, 4824, 23767, -7594, -6905, 33089, 18786, 12192, 24670, 31114, 35334, -4501, -14676, 7107, -59018, -21352, 20777, 19661, 20653, 33754, -885, -43758, 6269, 51897, -28719, -97488, -9527, 13746, 11644, 17644, -21720, 23782, -10481, 47867, 20752, 33810, -1875, 39918, -7710, -40840, 19808, -47075, 23066, 46616, 25201, 9287, 35436, -1602, 9645, -11978, 13273, 15544, 33465, 20063, 44539, 11687, 27314, -6538, -37467, 14031, 32970, -27086, 41323, 29551, 65910, -39027, -37800, -22232, 8212, 46316, -28981, -55282, 50417, -44929, -44062, 73879, 37573, -2596, -10877, -21893, -133218, -33707, -25753, -9531, 17530, 61126, 2748, -56235, 43874, -10872, -90459, -30387, 115267, -7264, -44452, 122626, 14839, -599, 10337, 57166, -67467, -54957, 63669, 1202, 18488, 52594, 7205, -97822, 612, 78069, -5403, -63562, 47236, 36873, -154827, -26188, 82427, -39521, 5628, 7416, 5276, -53095, 47050, 26121, -42207, 79021, -13035, 2499, -66943, 29040, -72355, -23480, 23416, -12885, -44225, -42688, -4224, 19858, 55299, 15735, 11465, 101876, -39169, 51786, 14723, 43280, -68697, 16410, 92295, 56767, 7183, 111850, 4550, 115451, -38443, -19642, -35058, 10230, 93829, 8925, 63047, 3146, 29250, 8530, 5255, -98117, -115517, -76817, -8724, 41044, 1312, -35974, 79333, -28567, 7547, -10580, -24559, -16238, 10794, -3867, 24848, 57770, -51536, -35040, 71033, 29853, 62029, -7125, -125585, -32169, -47907, 156811, -65176, -58006, -15757, -57861, 11963, 30225, -41901, -41681, 31310, 27982, 18613, 61760, 60746, -59096, 33499, 30097, -17997, 24032, 56442, -83042, 23747, -20931, -21978, -158752, -9883, -73598, -7987, -7333, -125403, -116329, 30585, 53281, 51018, -29193, 88575, 8264, -40147, -16289, 113088, 12810, -6508, 101552, -13037, 34440, -41840, 101643, 24263, 80532, 61748, 65574, 6423, -20672, 6591, -10834, -71716, 86919, -92626, 39161, 28490, 81319, 46676, 106720, 43530, 26998, 57456, -8862, 60989, 13982, 3119, -2224, 14743, 55415, -49093, -29303, 28999, 1789, 55953, -84043, -7780, -65013, 57129, -47251, 61484, 61994, -78361, -82778, 22487, -26894, 9756, -74637, -15519, -4360, 30115, 42433, 35475, 15286, 69768, 21509, -20214, 78675, -21163, 13596, 11443, -10698, -53621, -53867, -24155, 64500, -42784, -33077, -16500, 873, -52788, 14546, -38011, 36974, -39849, -34029, -94311, 83068, -50437, -26169, -46746, 59185, 42259, -101379, -12943, 30089, -59086, 36271, 22723, -30253, -52472, -70826, -23289, 3331, -31687, 14183, -857, -28627, 35246, -51284, 5636, -6933, 66539, 36654, 50927, 24783, 3457, 33276, 45281, 45650, -4938, -9968, -22590, 47995, 69229, 5214, -58365, -17907, -14651, 18668, 18009, 12649, -11851, -13387, 20339, 52472, -1087, -21458, -68647, 52295, 15849, 40608, 15323, 25164, -29368, 10352, -7055, 7159, 21695, -5373, -54849, 101103, -24963, -10511, 33227, 7659, 41042, -69588, 26718, -20515, 6441, 38135, -63, 24088, -35364, -12785, -18709, 47843, 48533, -48575, 17251, -19394, 32878, -9010, -9050, 504, -12407, 28076, -3429, 25324, -4210, -26119, 752, -29203, 28251, -11324, -32140, -3366, -25135, 18702, -31588, -7047, -24267, 49987, -14975, -33169, 37744, -7720, -9035, 16964, -2807, -421, 14114, -17097, -13662, 40628, -12139, -9427, 5369, 17551, -13232, -16211, 9804, -7422, 2677, 28635, -8280, -4906, 2908, -22558, 5604, 12459, 8756, -3980, -4745, -18525, 7913, 5970, -16457, 20230, -6247, -13812, 2505, 11899, 1409, -15094, 22540, -18863, 137, 11123, -4516, 2290, -8594, 12150, -10380, 3005, 5235, -7350, 2535, -858 ], ZZ) assert dup_mul(p1, p2, ZZ) == res
def dup_zz_zassenhaus(f, K): """Factor primitive square-free polynomials in `Z[x]`. """ n = dup_degree(f) if n == 1: return [f] fc = f[-1] A = dup_max_norm(f, K) b = dup_LC(f, K) B = int(abs(K.sqrt(K(n + 1)) * 2**n * A * b)) C = int((n + 1)**(2 * n) * A**(2 * n - 1)) gamma = int(_ceil(2 * _log(C, 2))) bound = int(2 * gamma * _log(gamma)) a = [] # choose a prime number `p` such that `f` be square free in Z_p # if there are many factors in Z_p, choose among a few different `p` # the one with fewer factors for px in range(3, bound + 1): if not isprime(px) or b % px == 0: continue px = K.convert(px) F = gf_from_int_poly(f, px) if not gf_sqf_p(F, px, K): continue fsqfx = gf_factor_sqf(F, px, K)[1] a.append((px, fsqfx)) if len(fsqfx) < 15 or len(a) > 4: break p, fsqf = min(a, key=lambda x: len(x[1])) l = int(_ceil(_log(2 * B + 1, p))) modular = [gf_to_int_poly(ff, p) for ff in fsqf] g = dup_zz_hensel_lift(p, f, modular, l, K) sorted_T = range(len(g)) T = set(sorted_T) factors, s = [], 1 pl = p**l while 2 * s <= len(T): for S in subsets(sorted_T, s): # lift the constant coefficient of the product `G` of the factors # in the subset `S`; if it is does not divide `fc`, `G` does # not divide the input polynomial if b == 1: q = 1 for i in S: q = q * g[i][-1] q = q % pl if not _test_pl(fc, q, pl): continue else: G = [b] for i in S: G = dup_mul(G, g[i], K) G = dup_trunc(G, pl, K) G = dup_primitive(G, K)[1] q = G[-1] if q and fc % q != 0: continue H = [b] S = set(S) T_S = T - S if b == 1: G = [b] for i in S: G = dup_mul(G, g[i], K) G = dup_trunc(G, pl, K) for i in T_S: H = dup_mul(H, g[i], K) H = dup_trunc(H, pl, K) G_norm = dup_l1_norm(G, K) H_norm = dup_l1_norm(H, K) if G_norm * H_norm <= B: T = T_S sorted_T = [i for i in sorted_T if i not in S] G = dup_primitive(G, K)[1] f = dup_primitive(H, K)[1] factors.append(G) b = dup_LC(f, K) break else: s += 1 return factors + [f]