def dmp_sqf_list(f, u, K, all=False): """ Return square-free decomposition of a polynomial in ``K[X]``. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> f = x**5 + 2*x**4*y + x**3*y**2 >>> R.dmp_sqf_list(f) (1, [(x + y, 2), (x, 3)]) >>> R.dmp_sqf_list(f, all=True) (1, [(1, 1), (x + y, 2), (x, 3)]) """ if not u: return dup_sqf_list(f, K, all=all) if K.is_FiniteField: return dmp_gf_sqf_list(f, u, K, all=all) if K.has_Field: coeff = dmp_ground_LC(f, u, K) f = dmp_ground_monic(f, u, K) else: coeff, f = dmp_ground_primitive(f, u, K) if K.is_negative(dmp_ground_LC(f, u, K)): f = dmp_neg(f, u, K) coeff = -coeff if dmp_degree(f, u) <= 0: return coeff, [] result, i = [], 1 h = dmp_diff(f, 1, u, K) g, p, q = dmp_inner_gcd(f, h, u, K) while True: d = dmp_diff(p, 1, u, K) h = dmp_sub(q, d, u, K) if dmp_zero_p(h, u): result.append((p, i)) break g, p, q = dmp_inner_gcd(p, h, u, K) if all or dmp_degree(g, u) > 0: result.append((g, i)) i += 1 return coeff, result
def dmp_zz_collins_resultant(f, g, u, K): """ Collins's modular resultant algorithm in `Z[X]`. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> f = x + y + 2 >>> g = 2*x*y + x + 3 >>> R.dmp_zz_collins_resultant(f, g) -2*y**2 - 5*y + 1 """ n = dmp_degree(f, u) m = dmp_degree(g, u) if n < 0 or m < 0: return dmp_zero(u - 1) A = dmp_max_norm(f, u, K) B = dmp_max_norm(g, u, K) a = dmp_ground_LC(f, u, K) b = dmp_ground_LC(g, u, K) v = u - 1 B = K(2) * K.factorial(K(n + m)) * A**m * B**n r, p, P = dmp_zero(v), K.one, K.one while P <= B: p = K(nextprime(p)) while not (a % p) or not (b % p): p = K(nextprime(p)) F = dmp_ground_trunc(f, p, u, K) G = dmp_ground_trunc(g, p, u, K) try: R = dmp_zz_modular_resultant(F, G, p, u, K) except HomomorphismFailed: continue if K.is_one(P): r = R else: r = dmp_apply_pairs(r, R, _collins_crt, (P, p, K), v, K) P *= p return r
def dmp_cancel(f, g, u, K, include=True): """ Cancel common factors in a rational function `f/g`. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_cancel(2*x**2 - 2, x**2 - 2*x + 1) (2*x + 2, x - 1) """ K0 = None if K.has_Field and K.has_assoc_Ring: K0, K = K, K.get_ring() cq, f = dmp_clear_denoms(f, u, K0, K, convert=True) cp, g = dmp_clear_denoms(g, u, K0, K, convert=True) else: cp, cq = K.one, K.one _, p, q = dmp_inner_gcd(f, g, u, K) if K0 is not None: _, cp, cq = K.cofactors(cp, cq) p = dmp_convert(p, u, K, K0) q = dmp_convert(q, u, K, K0) K = K0 p_neg = K.is_negative(dmp_ground_LC(p, u, K)) q_neg = K.is_negative(dmp_ground_LC(q, u, K)) if p_neg and q_neg: p, q = dmp_neg(p, u, K), dmp_neg(q, u, K) elif p_neg: cp, p = -cp, dmp_neg(p, u, K) elif q_neg: cp, q = -cp, dmp_neg(q, u, K) if not include: return cp, cq, p, q p = dmp_mul_ground(p, cp, u, K) q = dmp_mul_ground(q, cq, u, K) return p, q
def _dmp_ff_trivial_gcd(f, g, u, K): """Handle trivial cases in GCD algorithm over a field. """ zero_f = dmp_zero_p(f, u) zero_g = dmp_zero_p(g, u) if zero_f and zero_g: return tuple(dmp_zeros(3, u, K)) elif zero_f: return (dmp_ground_monic(g, u, K), dmp_zero(u), dmp_ground(dmp_ground_LC(g, u, K), u)) elif zero_g: return (dmp_ground_monic(f, u, K), dmp_ground(dmp_ground_LC(f, u, K), u), dmp_zero(u)) elif query('USE_SIMPLIFY_GCD'): return _dmp_simplify_gcd(f, g, u, K)
def dmp_zz_mignotte_bound(f, u, K): """Mignotte bound for multivariate polynomials in `K[X]`. """ a = dmp_max_norm(f, u, K) b = abs(dmp_ground_LC(f, u, K)) n = sum(dmp_degree_list(f, u)) return K.sqrt(K(n + 1)) * 2**n * a * b
def dmp_ext_factor(f, u, K): """Factor multivariate polynomials over algebraic number fields. """ if not u: return dup_ext_factor(f, K) lc = dmp_ground_LC(f, u, K) f = dmp_ground_monic(f, u, K) if all(d <= 0 for d in dmp_degree_list(f, u)): return lc, [] f, F = dmp_sqf_part(f, u, K), f s, g, r = dmp_sqf_norm(f, u, K) factors = dmp_factor_list_include(r, u, K.domain) if len(factors) == 1: coeff, factors = lc, [f] else: H = dmp_raise([K.one, s * K.unit], u, 0, K) for i, (factor, _) in enumerate(factors): h = dmp_convert(factor, u, K.domain, K) h, _, g = dmp_inner_gcd(h, g, u, K) h = dmp_compose(h, H, u, K) factors[i] = h return lc, dmp_trial_division(F, factors, u, K)
def dmp_ground_monic(f, u, K): """ Divide all coefficients by ``LC(f)`` in ``K[X]``. Examples ======== >>> from diofant.polys import ring, ZZ, QQ >>> R, x,y = ring("x,y", ZZ) >>> f = 3*x**2*y + 6*x**2 + 3*x*y + 9*y + 3 >>> R.dmp_ground_monic(f) x**2*y + 2*x**2 + x*y + 3*y + 1 >>> R, x,y = ring("x,y", QQ) >>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3 >>> R.dmp_ground_monic(f) x**2*y + 8/3*x**2 + 5/3*x*y + 2*x + 2/3*y + 1 """ if not u: return dup_monic(f, K) if dmp_zero_p(f, u): return f lc = dmp_ground_LC(f, u, K) if K.is_one(lc): return f else: return dmp_exquo_ground(f, lc, u, K)
def dmp_sqf_part(f, u, K): """ Returns square-free part of a polynomial in ``K[X]``. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2) x**2 + x*y """ if not u: return dup_sqf_part(f, K) if K.is_FiniteField: return dmp_gf_sqf_part(f, u, K) if dmp_zero_p(f, u): return f if K.is_negative(dmp_ground_LC(f, u, K)): f = dmp_neg(f, u, K) gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K) sqf = dmp_quo(f, gcd, u, K) if K.has_Field: return dmp_ground_monic(sqf, u, K) else: return dmp_ground_primitive(sqf, u, K)[1]
def dmp_content(f, u, K): """ Returns GCD of multivariate coefficients. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x,y, = ring("x,y", ZZ) >>> R.dmp_content(2*x*y + 6*x + 4*y + 12) 2*y + 6 """ cont, v = dmp_LC(f, K), u - 1 if dmp_zero_p(f, u): return cont for c in f[1:]: cont = dmp_gcd(cont, c, v, K) if dmp_one_p(cont, v, K): break if K.is_negative(dmp_ground_LC(cont, v, K)): return dmp_neg(cont, v, K) else: return cont
def _dmp_rr_trivial_gcd(f, g, u, K): """Handle trivial cases in GCD algorithm over a ring. """ zero_f = dmp_zero_p(f, u) zero_g = dmp_zero_p(g, u) if zero_f and zero_g: return tuple(dmp_zeros(3, u, K)) elif zero_f: if K.is_nonnegative(dmp_ground_LC(g, u, K)): return g, dmp_zero(u), dmp_one(u, K) else: return dmp_neg(g, u, K), dmp_zero(u), dmp_ground(-K.one, u) elif zero_g: if K.is_nonnegative(dmp_ground_LC(f, u, K)): return f, dmp_one(u, K), dmp_zero(u) else: return dmp_neg(f, u, K), dmp_ground(-K.one, u), dmp_zero(u) elif dmp_one_p(f, u, K) or dmp_one_p(g, u, K): return dmp_one(u, K), f, g elif query('USE_SIMPLIFY_GCD'): return _dmp_simplify_gcd(f, g, u, K)
def _dmp_zz_gcd_interpolate(h, x, v, K): """Interpolate polynomial GCD from integer GCD. """ f = [] while not dmp_zero_p(h, v): g = dmp_ground_trunc(h, x, v, K) f.insert(0, g) h = dmp_sub(h, g, v, K) h = dmp_quo_ground(h, x, v, K) if K.is_negative(dmp_ground_LC(f, v + 1, K)): return dmp_neg(f, v + 1, K) else: return f
def dmp_qq_heu_gcd(f, g, u, K0): """ Heuristic polynomial GCD in `Q[X]`. Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``, and ``cfg = quo(g, h)``. Examples ======== >>> from diofant.polys import ring, QQ >>> R, x,y, = ring("x,y", QQ) >>> f = QQ(1,4)*x**2 + x*y + y**2 >>> g = QQ(1,2)*x**2 + x*y >>> R.dmp_qq_heu_gcd(f, g) (x + 2*y, 1/4*x + 1/2*y, 1/2*x) """ result = _dmp_ff_trivial_gcd(f, g, u, K0) if result is not None: return result K1 = K0.get_ring() cf, f = dmp_clear_denoms(f, u, K0, K1) cg, g = dmp_clear_denoms(g, u, K0, K1) f = dmp_convert(f, u, K0, K1) g = dmp_convert(g, u, K0, K1) h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1) h = dmp_convert(h, u, K1, K0) c = dmp_ground_LC(h, u, K0) h = dmp_ground_monic(h, u, K0) cff = dmp_convert(cff, u, K1, K0) cfg = dmp_convert(cfg, u, K1, K0) cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0) cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0) return h, cff, cfg
def dmp_rr_prs_gcd(f, g, u, K): """ Computes polynomial GCD using subresultants over a ring. Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``, and ``cfg = quo(g, h)``. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x,y, = ring("x,y", ZZ) >>> f = x**2 + 2*x*y + y**2 >>> g = x**2 + x*y >>> R.dmp_rr_prs_gcd(f, g) (x + y, x + y, x) """ if not u: return dup_rr_prs_gcd(f, g, K) result = _dmp_rr_trivial_gcd(f, g, u, K) if result is not None: return result fc, F = dmp_primitive(f, u, K) gc, G = dmp_primitive(g, u, K) h = dmp_subresultants(F, G, u, K)[-1] c, _, _ = dmp_rr_prs_gcd(fc, gc, u - 1, K) if K.is_negative(dmp_ground_LC(h, u, K)): h = dmp_neg(h, u, K) _, h = dmp_primitive(h, u, K) h = dmp_mul_term(h, c, 0, u, K) cff = dmp_quo(f, h, u, K) cfg = dmp_quo(g, h, u, K) return h, cff, cfg
def test_dmp_ground_LC(): assert dmp_ground_LC([[]], 1, ZZ) == 0 assert dmp_ground_LC([[2, 3, 4], [5]], 1, ZZ) == 2 assert dmp_ground_LC([[[]]], 2, ZZ) == 0 assert dmp_ground_LC([[[2], [3, 4]], [[5]]], 2, ZZ) == 2
def dmp_zz_factor(f, u, K): """ Factor (non square-free) polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x]` computes its complete factorization `f_1, ..., f_n` into irreducibles over integers:: f = content(f) f_1**k_1 ... f_n**k_n The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division is used to recover the multiplicities of factors. The result is returned as a tuple consisting of:: (content(f), [(f_1, k_1), ..., (f_n, k_n)) Consider polynomial `f = 2*(x**2 - y**2)`:: >>> from diofant.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_zz_factor(2*x**2 - 2*y**2) (2, [(x - y, 1), (x + y, 1)]) In result we got the following factorization:: f = 2 (x - y) (x + y) References ========== .. [1] [Gathen99]_ """ if not u: return dup_zz_factor(f, K) if dmp_zero_p(f, u): return K.zero, [] cont, g = dmp_ground_primitive(f, u, K) if dmp_ground_LC(g, u, K) < 0: cont, g = -cont, dmp_neg(g, u, K) if all(d <= 0 for d in dmp_degree_list(g, u)): return cont, [] G, g = dmp_primitive(g, u, K) factors = [] if dmp_degree(g, u) > 0: g = dmp_sqf_part(g, u, K) H = dmp_zz_wang(g, u, K) factors = dmp_trial_division(f, H, u, K) for g, k in dmp_zz_factor(G, u - 1, K)[1]: factors.insert(0, ([g], k)) return cont, _sort_factors(factors)
def dmp_zz_heu_gcd(f, g, u, K): """ Heuristic polynomial GCD in `Z[X]`. Given univariate polynomials `f` and `g` in `Z[X]`, returns their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg`` such that:: h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h) The algorithm is purely heuristic which means it may fail to compute the GCD. This will be signaled by raising an exception. In this case you will need to switch to another GCD method. The algorithm computes the polynomial GCD by evaluating polynomials f and g at certain points and computing (fast) integer GCD of those evaluations. The polynomial GCD is recovered from the integer image by interpolation. The evaluation proces reduces f and g variable by variable into a large integer. The final step is to verify if the interpolated polynomial is the correct GCD. This gives cofactors of the input polynomials as a side effect. Examples ======== >>> from diofant.polys import ring, ZZ >>> R, x,y, = ring("x,y", ZZ) >>> f = x**2 + 2*x*y + y**2 >>> g = x**2 + x*y >>> R.dmp_zz_heu_gcd(f, g) (x + y, x + y, x) References ========== .. [1] [Liao95]_ """ if not u: return dup_zz_heu_gcd(f, g, K) result = _dmp_rr_trivial_gcd(f, g, u, K) if result is not None: return result gcd, f, g = dmp_ground_extract(f, g, u, K) f_norm = dmp_max_norm(f, u, K) g_norm = dmp_max_norm(g, u, K) B = K(2 * min(f_norm, g_norm) + 29) x = max( min(B, 99 * K.sqrt(B)), 2 * min(f_norm // abs(dmp_ground_LC(f, u, K)), g_norm // abs(dmp_ground_LC(g, u, K))) + 2) for i in range(0, HEU_GCD_MAX): ff = dmp_eval(f, x, u, K) gg = dmp_eval(g, x, u, K) v = u - 1 if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)): h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K) h = _dmp_zz_gcd_interpolate(h, x, v, K) h = dmp_ground_primitive(h, u, K)[1] cff_, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): cfg_, r = dmp_div(g, h, u, K) if dmp_zero_p(r, u): h = dmp_mul_ground(h, gcd, u, K) return h, cff_, cfg_ cff = _dmp_zz_gcd_interpolate(cff, x, v, K) h, r = dmp_div(f, cff, u, K) if dmp_zero_p(r, u): cfg_, r = dmp_div(g, h, u, K) if dmp_zero_p(r, u): h = dmp_mul_ground(h, gcd, u, K) return h, cff, cfg_ cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K) h, r = dmp_div(g, cfg, u, K) if dmp_zero_p(r, u): cff_, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): h = dmp_mul_ground(h, gcd, u, K) return h, cff_, cfg x = 73794 * x * K.sqrt(K.sqrt(x)) // 27011 raise HeuristicGCDFailed('no luck')
def dmp_zz_wang(f, u, K, mod=None, seed=None): """ Factor primitive square-free polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which is primitive and square-free in `x_1`, computes factorization of `f` into irreducibles over integers. The procedure is based on Wang's Enhanced Extended Zassenhaus algorithm. The algorithm works by viewing `f` as a univariate polynomial in `Z[x_2,...,x_n][x_1]`, for which an evaluation mapping is computed:: x_2 -> a_2, ..., x_n -> a_n where `a_i`, for `i = 2, ..., n`, are carefully chosen integers. The mapping is used to transform `f` into a univariate polynomial in `Z[x_1]`, which can be factored efficiently using Zassenhaus algorithm. The last step is to lift univariate factors to obtain true multivariate factors. For this purpose a parallel Hensel lifting procedure is used. The parameter ``seed`` is passed to _randint and can be used to seed randint (when an integer) or (for testing purposes) can be a sequence of numbers. References ========== .. [1] [Wang78]_ .. [2] [Geddes92]_ """ from diofant.utilities.randtest import _randint randint = _randint(seed) ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K) b = dmp_zz_mignotte_bound(f, u, K) p = K(nextprime(b)) if mod is None: if u == 1: mod = 2 else: mod = 1 history, configs, A, r = set(), [], [K.zero] * u, None try: cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K) _, H = dup_zz_factor_sqf(s, K) r = len(H) if r == 1: return [f] configs = [(s, cs, E, H, A)] except EvaluationFailed: pass eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS') eez_num_tries = query('EEZ_NUMBER_OF_TRIES') eez_mod_step = query('EEZ_MODULUS_STEP') while len(configs) < eez_num_configs: for _ in range(eez_num_tries): A = [K(randint(-mod, mod)) for _ in range(u)] if tuple(A) not in history: history.add(tuple(A)) else: continue try: cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K) except EvaluationFailed: continue _, H = dup_zz_factor_sqf(s, K) rr = len(H) if r is not None: if rr != r: # pragma: no cover if rr < r: configs, r = [], rr else: continue else: r = rr if r == 1: return [f] configs.append((s, cs, E, H, A)) if len(configs) == eez_num_configs: break else: mod += eez_mod_step s_norm, s_arg, i = None, 0, 0 for s, _, _, _, _ in configs: _s_norm = dup_max_norm(s, K) if s_norm is not None: if _s_norm < s_norm: s_norm = _s_norm s_arg = i else: s_norm = _s_norm i += 1 _, cs, E, H, A = configs[s_arg] orig_f = f try: f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K) factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K) except ExtraneousFactors: # pragma: no cover if query('EEZ_RESTART_IF_NEEDED'): return dmp_zz_wang(orig_f, u, K, mod + 1) else: raise ExtraneousFactors( "we need to restart algorithm with better parameters") negative, result = 0, [] for f in factors: _, f = dmp_ground_primitive(f, u, K) if K.is_negative(dmp_ground_LC(f, u, K)): f = dmp_neg(f, u, K) result.append(f) return result