Пример #1
0
def test_BlockMatrix_Inverse_execution():
    k, n = 2, 4
    dtype = 'float32'
    A = diofant.MatrixSymbol('A', n, k)
    B = diofant.MatrixSymbol('B', n, n)
    inputs = A, B
    output = B.I * A

    cutsizes = {
        A: [(n // 2, n // 2), (k // 2, k // 2)],
        B: [(n // 2, n // 2), (n // 2, n // 2)]
    }
    cutinputs = [diofant.blockcut(i, *cutsizes[i]) for i in inputs]
    cutoutput = output.subs(dict(zip(inputs, cutinputs)))

    dtypes = dict(zip(inputs, [dtype] * len(inputs)))
    f = theano_function(inputs, [output], dtypes=dtypes, cache={})
    fblocked = theano_function(inputs, [diofant.block_collapse(cutoutput)],
                               dtypes=dtypes,
                               cache={})

    ninputs = [np.random.rand(*x.shape).astype(dtype) for x in inputs]
    ninputs = [
        np.arange(n * k).reshape(A.shape).astype(dtype),
        np.eye(n).astype(dtype)
    ]
    ninputs[1] += np.ones(B.shape) * 1e-5

    assert np.allclose(f(*ninputs), fblocked(*ninputs), rtol=1e-5)
Пример #2
0
def test_theano_function_kwargs():
    import numpy as np
    f = theano_function([x, y, z], [x + y],
                        dim=1,
                        on_unused_input='ignore',
                        dtypes={
                            x: 'float64',
                            y: 'float64',
                            z: 'float64'
                        })
    assert np.linalg.norm(f([1, 2], [3, 4], [0, 0]) -
                          np.asarray([4, 6])) < 1e-9

    f = theano_function([x, y, z], [x + y],
                        dtypes={
                            x: 'float64',
                            y: 'float64',
                            z: 'float64'
                        },
                        dim=1,
                        on_unused_input='ignore')
    xx = np.arange(3).astype('float64')
    yy = 2 * np.arange(3).astype('float64')
    zz = 2 * np.arange(3).astype('float64')
    assert np.linalg.norm(f(xx, yy, zz) - 3 * np.arange(3)) < 1e-9
Пример #3
0
def test_theano_function_numpy():
    f = theano_function([x, y], [x + y],
                        dim=1,
                        dtypes={
                            x: 'float64',
                            y: 'float64'
                        })
    assert np.linalg.norm(f([1, 2], [3, 4]) - np.asarray([4, 6])) < 1e-9

    f = theano_function([x, y], [x + y],
                        dtypes={
                            x: 'float64',
                            y: 'float64'
                        },
                        dim=1)
    xx = np.arange(3).astype('float64')
    yy = 2 * np.arange(3).astype('float64')
    assert np.linalg.norm(f(xx, yy) - 3 * np.arange(3)) < 1e-9
Пример #4
0
def test_bad_keyword_args_raise_error():
    pytest.raises(Exception, lambda: theano_function([x], [x + 1], foobar=3))
Пример #5
0
def test_theano_function_simple():
    f = theano_function([x, y], [x + y])
    assert f(2, 3) == 5