Пример #1
0
def test_reduce_piecewise_inequalities():
    e = abs(x - 5) < 3
    ans = And(Lt(2, x), Lt(x, 8))
    assert reduce_inequalities(e) == ans
    assert reduce_inequalities(e, x) == ans
    assert reduce_inequalities(abs(x - 5)) == Eq(x, 5)
    assert reduce_inequalities(
        abs(2*x + 3) >= 8) == Or(And(Le(Rational(5, 2), x), Lt(x, oo)),
        And(Le(x, -Rational(11, 2)), Lt(-oo, x)))
    assert reduce_inequalities(abs(x - 4) + abs(
        3*x - 5) < 7) == And(Lt(Rational(1, 2), x), Lt(x, 4))
    assert reduce_inequalities(abs(x - 4) + abs(3*abs(x) - 5) < 7) == \
        Or(And(Integer(-2) < x, x < -1), And(Rational(1, 2) < x, x < 4))

    nr = Symbol('nr', extended_real=False)
    pytest.raises(TypeError, lambda: reduce_inequalities(abs(nr - 5) < 3))

    # sympy/sympy#10198
    assert reduce_inequalities(-1 + 1/abs(1/x - 1) < 0) == \
        Or(And(S.Zero < x, x < S.Half), And(-oo < x, x < S.Zero))

    # sympy/sympy#10255
    assert reduce_inequalities(Piecewise((1, x < 1), (3, True)) > 1) == \
        And(S.One <= x, x < oo)
    assert reduce_inequalities(Piecewise((x**2, x < 0), (2*x, x >= 0)) < 1) == \
        And(-S.One < x, x < S.Half)
Пример #2
0
def test_deltaproduct_mul_add_x_y_add_y_kd():
    assert dp((x + y)*(y + Kd(i, j)), (j, 1, 3)) == ((x + y)*y)**3 + \
        (x + y)*((x + y)*y)**2*Kd(i, 1) + \
        (x + y)*y*(x + y)**2*y*Kd(i, 2) + \
        ((x + y)*y)**2*(x + y)*Kd(i, 3)
    assert dp((x + y) * (y + Kd(i, j)), (j, 1, 1)) == (x + y) * (y + Kd(i, 1))
    assert dp((x + y) * (y + Kd(i, j)), (j, 2, 2)) == (x + y) * (y + Kd(i, 2))
    assert dp((x + y) * (y + Kd(i, j)), (j, 3, 3)) == (x + y) * (y + Kd(i, 3))
    assert dp((x + y)*(y + Kd(i, j)), (j, 1, k)) == \
        ((x + y)*y)**k + Piecewise(
            (((x + y)*y)**(i - 1)*(x + y)*((x + y)*y)**(k - i),
             And(Integer(1) <= i, i <= k)),
            (0, True)
    )
    assert dp((x + y)*(y + Kd(i, j)), (j, k, 3)) == \
        ((x + y)*y)**(-k + 4) + Piecewise(
            (((x + y)*y)**(i - k)*(x + y)*((x + y)*y)**(3 - i),
             And(k <= i, i <= 3)),
            (0, True)
    )
    assert dp((x + y)*(y + Kd(i, j)), (j, k, l)) == \
        ((x + y)*y)**(-k + l + 1) + Piecewise(
            (((x + y)*y)**(i - k)*(x + y)*((x + y)*y)**(l - i),
             And(k <= i, i <= l)),
            (0, True)
    )
Пример #3
0
def test_Sum_doit():
    f = Function('f')
    assert Sum(n * Integral(a**2), (n, 0, 2)).doit() == a**3
    assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \
        3*Integral(a**2)
    assert summation(n * Integral(a**2), (n, 0, 2)) == 3 * Integral(a**2)

    # test nested sum evaluation
    s = Sum(Sum(Sum(2, (z, 1, n + 1)), (y, x + 1, n)), (x, 1, n))
    assert 0 == (s.doit() - n * (n + 1) * (n - 1)).factor()

    assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3
    assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \
        3*Piecewise((1, And(Integer(1) <= k, k <= 3)), (0, True))
    assert Sum(f(n)*Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \
        f(1) + f(2) + f(3)
    assert Sum(f(n)*Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \
        Sum(Piecewise((f(n), And(Le(0, n), n < oo)), (0, True)), (n, 1, oo))
    l = Symbol('l', integer=True, positive=True)
    assert Sum(f(l)*Sum(KroneckerDelta(m, l), (m, 0, oo)), (l, 1, oo)).doit() == \
        Sum(f(l), (l, 1, oo))

    # issue sympy/sympy#2597
    nmax = symbols('N', integer=True, positive=True)
    pw = Piecewise((1, And(Integer(1) <= n, n <= nmax)), (0, True))
    assert Sum(pw, (n, 1, nmax)).doit() == Sum(pw, (n, 1, nmax))
Пример #4
0
def test_interval_arguments():
    assert Interval(0, oo).right_open is false
    assert Interval(-oo, 0).left_open is false
    assert Interval(oo, -oo) == S.EmptySet

    assert isinstance(Interval(1, 1), FiniteSet)
    e = Sum(x, (x, 1, 3))
    assert isinstance(Interval(e, e), FiniteSet)

    assert Interval(1, 0) == S.EmptySet
    assert Interval(1, 1).measure == 0

    assert Interval(1, 1, False, True) == S.EmptySet
    assert Interval(1, 1, True, False) == S.EmptySet
    assert Interval(1, 1, True, True) == S.EmptySet

    assert isinstance(Interval(0, Symbol('a')), Interval)
    assert Interval(Symbol('a', extended_real=True, positive=True),
                    0) == S.EmptySet
    pytest.raises(ValueError, lambda: Interval(0, I))
    pytest.raises(ValueError,
                  lambda: Interval(0, Symbol('z', extended_real=False)))

    pytest.raises(NotImplementedError, lambda: Interval(0, 1, And(x, y)))
    pytest.raises(NotImplementedError,
                  lambda: Interval(0, 1, False, And(x, y)))
    pytest.raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y)))
Пример #5
0
def test_domains():
    X, Y = Die('x', 6), Die('y', 6)
    x, y = X.symbol, Y.symbol
    # Domains
    d = where(X > Y)
    assert d.condition == (x > y)
    d = where(And(X > Y, Y > 3))
    assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y,
                                                 4)), And(Eq(x, 6), Eq(y, 5)),
                                And(Eq(x, 6), Eq(y, 4)))
    assert len(d.elements) == 3

    assert len(pspace(X + Y).domain.elements) == 36

    Z = Die('x', 4)

    pytest.raises(ValueError,
                  lambda: P(X > Z))  # Two domains with same internal symbol

    assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2

    assert where(X > 3).set == FiniteSet(4, 5, 6)
    assert X.pspace.domain.dict == FiniteSet(
        *[Dict({X.symbol: i}) for i in range(1, 7)])

    assert where(X > Y).dict == FiniteSet(*[
        Dict({
            X.symbol: i,
            Y.symbol: j
        }) for i in range(1, 7) for j in range(1, 7) if i > j
    ])
Пример #6
0
def test_equals():
    assert Not(Or(A, B)).equals( And(Not(A), Not(B)) ) is True
    assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True
    assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True
    assert (A >> B).equals(~A >> ~B) is False
    assert (A >> (B >> A)).equals(A >> (C >> A)) is False
    pytest.raises(NotImplementedError, lambda: And(A, A < B).equals(And(A, B > A)))
Пример #7
0
def test_deltaproduct_mul_add_x_kd_add_y_kd():
    assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 1, 3)) == \
        Kd(i, 1)*(Kd(i, k) + x)*((Kd(i, k) + x)*y)**2 + \
        Kd(i, 2)*(Kd(i, k) + x)*y*(Kd(i, k) + x)**2*y + \
        Kd(i, 3)*((Kd(i, k) + x)*y)**2*(Kd(i, k) + x) + \
        ((Kd(i, k) + x)*y)**3
    assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 1, 1)) == \
        (x + Kd(i, k))*(y + Kd(i, 1))
    assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 2, 2)) == \
        (x + Kd(i, k))*(y + Kd(i, 2))
    assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 3, 3)) == \
        (x + Kd(i, k))*(y + Kd(i, 3))
    assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, 1, k)) == \
        ((x + Kd(i, k))*y)**k + Piecewise(
            (((x + Kd(i, k))*y)**(i - 1)*(x + Kd(i, k)) *
             ((x + Kd(i, k))*y)**(-i + k), And(Integer(1) <= i, i <= k)),
            (0, True)
    )
    assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, k, 3)) == \
        ((x + Kd(i, k))*y)**(4 - k) + Piecewise(
            (((x + Kd(i, k))*y)**(i - k)*(x + Kd(i, k)) *
             ((x + Kd(i, k))*y)**(-i + 3), And(k <= i, i <= 3)),
            (0, True)
    )
    assert dp((x + Kd(i, k))*(y + Kd(i, j)), (j, k, l)) == \
        ((x + Kd(i, k))*y)**(-k + l + 1) + Piecewise(
            (((x + Kd(i, k))*y)**(i - k)*(x + Kd(i, k)) *
             ((x + Kd(i, k))*y)**(-i + l), And(k <= i, i <= l)),
            (0, True)
    )
Пример #8
0
def test_bool_symbol():
    assert And(a, True) == a
    assert And(a, True, True) == a
    assert And(a, False) is false
    assert And(a, True, False) is false
    assert Or(a, True) is true
    assert Or(a, False) == a
Пример #9
0
def test_bool_symbol():
    """Test that mixing symbols with boolean values works as expected."""
    assert And(A, True) == A
    assert And(A, True, True) == A
    assert And(A, False) is false
    assert And(A, True, False) is false
    assert Or(A, True) is true
    assert Or(A, False) == A
Пример #10
0
def test_overloading():
    """Test that |, & are overloaded as expected."""
    assert A & B == And(A, B)
    assert A | B == Or(A, B)
    assert (A & B) | C == Or(And(A, B), C)
    assert A >> B == Implies(A, B)
    assert A << B == Implies(B, A)
    assert ~A == Not(A)
    assert A ^ B == Xor(A, B)
Пример #11
0
def test_bool_as_set():
    assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2)
    assert Or(x >= 2, x <= -2).as_set() == (Interval(-oo, -2, True) +
                                            Interval(2, oo, False, True))
    assert Not(x > 2, evaluate=False).as_set() == Interval(-oo, 2, True)
    # issue sympy/sympy#10240
    assert Not(And(x > 2, x < 3)).as_set() == \
        Union(Interval(-oo, 2, True), Interval(3, oo, False, True))
    assert true.as_set() == S.UniversalSet
    assert false.as_set() == EmptySet()
Пример #12
0
def test_Interval_as_relational():
    x = Symbol('x')
    assert Interval(-1, 2, False, False).as_relational(x) == \
        And(Le(-1, x), Le(x, 2))
    assert Interval(-1, 2, True, False).as_relational(x) == \
        And(Lt(-1, x), Le(x, 2))
    assert Interval(-1, 2, False, True).as_relational(x) == \
        And(Le(-1, x), Lt(x, 2))
    assert Interval(-1, 2, True, True).as_relational(x) == \
        And(Lt(-1, x), Lt(x, 2))

    assert Interval(-oo, 2, right_open=False).as_relational(x) == And(
        Le(-oo, x), Le(x, 2))
    assert Interval(-oo, 2, right_open=True).as_relational(x) == And(
        Le(-oo, x), Lt(x, 2))

    assert Interval(-2, oo, left_open=False).as_relational(x) == And(
        Le(-2, x), Le(x, oo))
    assert Interval(-2, oo, left_open=True).as_relational(x) == And(
        Lt(-2, x), Le(x, oo))

    assert Interval(-oo, oo).as_relational(x) == And(Le(-oo, x), Le(x, oo))

    x = Symbol('x', extended_real=True)
    y = Symbol('y', extended_real=True)
    assert Interval(x, y).as_relational(x) == (x <= y)
    assert Interval(y, x).as_relational(x) == (y <= x)
Пример #13
0
def test_sympyissue_10925():
    try:
        name = 'test'
        tmp_file = TmpFileManager.tmp_file

        f = Piecewise((-1, x < -1), (x, And(-1 <= x, x < 0)),
                      (x**2, And(0 <= x, x < 1)), (x**3, True))
        p = plot(f, (x, -3, 3))
        p.save(tmp_file('%s_10925' % name))
    finally:
        TmpFileManager.cleanup()
Пример #14
0
def test_triangular():
    a = Symbol('a')
    b = Symbol('b')
    c = Symbol('c')

    X = Triangular('x', a, b, c)
    assert density(X)(x) == Piecewise(
        ((2*x - 2*a)/((-a + b)*(-a + c)), And(a <= x, x < c)),
        (2/(-a + b), Eq(x, c)),
        ((-2*x + 2*b)/((-a + b)*(b - c)), And(x <= b, c < x)),
        (0, True))
Пример #15
0
def test_triangular():
    a = Symbol("a")
    b = Symbol("b")
    c = Symbol("c")

    X = Triangular('x', a, b, c)
    assert density(X)(x) == Piecewise(
        ((2 * x - 2 * a) / ((-a + b) * (-a + c)), And(a <= x, x < c)),
        (2 / (-a + b), x == c),
        ((-2 * x + 2 * b) / ((-a + b) * (b - c)), And(x <= b, c < x)),
        (0, True))
Пример #16
0
def test_deltasummation_mul_x_kd():
    assert ds(x*Kd(i, j), (j, 1, 3)) == \
        Piecewise((x, And(Integer(1) <= i, i <= 3)), (0, True))
    assert ds(x * Kd(i, j), (j, 1, 1)) == Piecewise((x, Eq(i, 1)), (0, True))
    assert ds(x * Kd(i, j), (j, 2, 2)) == Piecewise((x, Eq(i, 2)), (0, True))
    assert ds(x * Kd(i, j), (j, 3, 3)) == Piecewise((x, Eq(i, 3)), (0, True))
    assert ds(x*Kd(i, j), (j, 1, k)) == \
        Piecewise((x, And(Integer(1) <= i, i <= k)), (0, True))
    assert ds(x*Kd(i, j), (j, k, 3)) == \
        Piecewise((x, And(k <= i, i <= 3)), (0, True))
    assert ds(x*Kd(i, j), (j, k, l)) == \
        Piecewise((x, And(k <= i, i <= l)), (0, True))
Пример #17
0
def test_sympyissue_4527():
    k, m = symbols('k m', integer=True)
    assert integrate(sin(k * x) * sin(m * x), (x, 0, pi)) == Piecewise(
        (0, And(Eq(k, 0), Eq(m, 0))), (-pi / 2, Eq(k, -m)), (pi / 2, Eq(k, m)),
        (0, True))
    assert integrate(sin(k * x) * sin(m * x), (x, )) == Piecewise(
        (0, And(Eq(k, 0), Eq(m, 0))),
        (-x * sin(m * x)**2 / 2 - x * cos(m * x)**2 / 2 +
         sin(m * x) * cos(m * x) / (2 * m), Eq(k, -m)),
        (x * sin(m * x)**2 / 2 + x * cos(m * x)**2 / 2 -
         sin(m * x) * cos(m * x) / (2 * m), Eq(k, m)),
        (m * sin(k * x) * cos(m * x) /
         (k**2 - m**2) - k * sin(m * x) * cos(k * x) / (k**2 - m**2), True))
Пример #18
0
def test_to_cnf():

    assert to_cnf(~(B | C)) == And(Not(B), Not(C))
    assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C))
    assert to_cnf(A >> B) == (~A) | B
    assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C)
    assert to_cnf(A & (B | C) | ~A & (B | C), True) == B | C

    assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A)))
    assert to_cnf(Equivalent(A, B & C)) == \
        (~A | B) & (~A | C) & (~B | ~C | A)
    assert to_cnf(Equivalent(A, B | C), True) == \
        And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A)))
    assert to_cnf(~(A | B) | C) == And(Or(Not(A), C), Or(Not(B), C))
Пример #19
0
 def convergence_statement(self):
     """ Return a condition on z under which the series converges. """
     from diofant import And, Or, re, Ne, oo
     R = self.radius_of_convergence
     if R == 0:
         return False
     if R == oo:
         return True
     # The special functions and their approximations, page 44
     e = self.eta
     z = self.argument
     c1 = And(re(e) < 0, abs(z) <= 1)
     c2 = And(0 <= re(e), re(e) < 1, abs(z) <= 1, Ne(z, 1))
     c3 = And(re(e) >= 1, abs(z) < 1)
     return Or(c1, c2, c3)
Пример #20
0
def test_issue_7173():
    assert laplace_transform(sinh(a*x)*cosh(a*x), x, s) == \
        (a/(s**2 - 4*a**2), 0,
        And(Or(Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <
        pi/2, Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <=
        pi/2), Or(Abs(periodic_argument(a, oo)) < pi/2,
        Abs(periodic_argument(a, oo)) <= pi/2)))
Пример #21
0
def test_union_contains():
    i1 = Interval(0, 1)
    i2 = Interval(2, 3)
    i3 = Union(i1, i2)
    pytest.raises(TypeError, lambda: x in i3)
    e = i3.contains(x)
    assert e == Or(And(0 <= x, x <= 1), And(2 <= x, x <= 3))
    assert e.subs(x, -0.5) is false
    assert e.subs(x, 0.5) is true
    assert e.subs(x, 1.5) is false
    assert e.subs(x, 2.5) is true
    assert e.subs(x, 3.5) is false

    U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6)
    assert all(el not in U for el in [0, 4, -oo])
    assert all(el in U for el in [2, 5, 10])
Пример #22
0
def test_messy():
    assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi / 2) / s, 0, True)

    assert laplace_transform(Shi(x), x, s) == (acoth(s) / s, 1, True)

    # where should the logs be simplified?
    assert laplace_transform(Chi(x), x, s) == \
        ((log(s**(-2)) - log((s**2 - 1)/s**2))/(2*s), 1, True)

    # TODO maybe simplify the inequalities?
    assert laplace_transform(besselj(a, x), x, s)[1:] == \
        (0, And(Integer(0) < re(a/2) + Rational(1, 2), Integer(0) < re(a/2) + 1))

    # NOTE s < 0 can be done, but argument reduction is not good enough yet
    assert fourier_transform(besselj(1, x)/x, x, s, noconds=False) == \
        (Piecewise((0, 4*abs(pi**2*s**2) > 1),
                   (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0)
    # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons)
    #                       - folding could be better

    assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \
        log(1 + sqrt(2))
    assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \
        log(Rational(1, 2) + sqrt(2)/2)

    assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \
        Piecewise((-acosh(1/x), 1 < abs(x**(-2))), (I*asin(1/x), True))
Пример #23
0
def test_to_nnf():
    assert to_nnf(true) is true
    assert to_nnf(false) is false
    assert to_nnf(A) == A
    assert (~A).to_nnf() == ~A

    class Boo(BooleanFunction):
        pass

    pytest.raises(ValueError, lambda: to_nnf(~Boo(A)))

    assert to_nnf(A | ~A | B) is true
    assert to_nnf(A & ~A & B) is false
    assert to_nnf(A >> B) == ~A | B
    assert to_nnf(Equivalent(A, B, C)) == (~A | B) & (~B | C) & (~C | A)
    assert to_nnf(A ^ B ^ C) == \
        (A | B | C) & (~A | ~B | C) & (A | ~B | ~C) & (~A | B | ~C)
    assert to_nnf(ITE(A, B, C)) == (~A | B) & (A | C)
    assert to_nnf(Not(A | B | C)) == ~A & ~B & ~C
    assert to_nnf(Not(A & B & C)) == ~A | ~B | ~C
    assert to_nnf(Not(A >> B)) == A & ~B
    assert to_nnf(Not(Equivalent(A, B, C))) == And(Or(A, B, C), Or(~A, ~B, ~C))
    assert to_nnf(Not(A ^ B ^ C)) == \
        (~A | B | C) & (A | ~B | C) & (A | B | ~C) & (~A | ~B | ~C)
    assert to_nnf(Not(ITE(A, B, C))) == (~A | ~B) & (A | ~C)
    assert to_nnf((A >> B) ^ (B >> A)) == (A & ~B) | (~A & B)
    assert to_nnf((A >> B) ^ (B >> A), False) == \
        (~A | ~B | A | B) & ((A & ~B) | (~A & B))
Пример #24
0
def test_deltasummation_mul_x_add_y_kd():
    assert ds(x*(y + Kd(i, j)), (j, 1, 3)) == \
        Piecewise((3*x*y + x, And(Integer(1) <= i, i <= 3)), (3*x*y, True))
    assert ds(x*(y + Kd(i, j)), (j, 1, 1)) == \
        Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
    assert ds(x*(y + Kd(i, j)), (j, 2, 2)) == \
        Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
    assert ds(x*(y + Kd(i, j)), (j, 3, 3)) == \
        Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
    assert ds(x*(y + Kd(i, j)), (j, 1, k)) == \
        Piecewise((k*x*y + x, And(Integer(1) <= i, i <= k)), (k*x*y, True))
    assert ds(x*(y + Kd(i, j)), (j, k, 3)) == \
        Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
    assert ds(x * (y + Kd(i, j)), (j, k, l)) == Piecewise(
        ((l - k + 1) * x * y + x, And(k <= i, i <= l)),
        ((l - k + 1) * x * y, True))
Пример #25
0
def test_quadratic_u():
    a = Symbol('a', extended_real=True)
    b = Symbol('b', extended_real=True)

    X = QuadraticU('x', a, b)
    assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3,
                                        And(x <= b, a <= x)), (0, True)))
    assert X.pspace.domain.set == Interval(a, b)
Пример #26
0
def test_quadratic_u():
    a = Symbol("a", extended_real=True)
    b = Symbol("b", extended_real=True)

    X = QuadraticU("x", a, b)
    assert density(X)(x) == (Piecewise(
        (12 * (x - a / 2 - b / 2)**2 / (-a + b)**3, And(x <= b, a <= x)),
        (0, True)))
Пример #27
0
def test_raised_cosine():
    mu = Symbol('mu', extended_real=True)
    s = Symbol('s', positive=True)

    X = RaisedCosine('x', mu, s)
    assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
                                        And(x <= mu + s, mu - s <= x)), (0, True)))
    assert X.pspace.domain.set == Interval(mu - s, mu + s)
Пример #28
0
def test_sympyissue_8368():
    assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((-s/(pi*(-s**2 + 1)), Abs(s**2) < 1),
                                (1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), (meijerg(((Rational(1, 2),), (0, 0)),
                                                                                    ((0, Rational(1, 2)), (0,)), polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) -
                       1 > 0)), (Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True))
    assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((2/(pi*(2*s**2 - 2)), Abs(s**2) < 1),
                                (-2/(pi*s**2*(-2 + 2/s**2)), Abs(s**(-2)) < 1),
                                (meijerg(((0,), (Rational(-1, 2), Rational(1, 2))),
                                         ((0, Rational(1, 2)), (Rational(-1, 2),)),
                                         polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0)),
                  (Integral(E**(-s*x)*sinh(x), (x, 0, oo)), True))
Пример #29
0
def test_basic():
    assert lambdarepr(x * y) == "x*y"
    assert lambdarepr(x + y) in ["y + x", "x + y"]
    assert lambdarepr(x**y) == "x**y"
    assert lambdarepr(And(x, y)) == "((x) and (y))"
    assert lambdarepr(Or(x, y)) == "((x) or (y))"
    assert lambdarepr(Not(x)) == "(not (x))"
    assert lambdarepr(false) == "False"
Пример #30
0
def test_satisfiable_non_symbols():
    class Zero(Boolean):
        pass

    assumptions = Zero(x*y)
    facts = Implies(Zero(x*y), Zero(x) | Zero(y))
    query = ~Zero(x) & ~Zero(y)
    refutations = [
        {Zero(x): True, Zero(x*y): True},
        {Zero(y): True, Zero(x*y): True},
        {Zero(x): True, Zero(y): True, Zero(x*y): True},
        {Zero(x): True, Zero(y): False, Zero(x*y): True},
        {Zero(x): False, Zero(y): True, Zero(x*y): True}]
    assert not satisfiable(And(assumptions, facts, query), algorithm='dpll')
    assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll') in refutations
    assert not satisfiable(And(assumptions, facts, query), algorithm='dpll2')
    assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll2') in refutations