Пример #1
0
def test_sympify3():
    assert sympify("x**3") == x**3
    assert sympify("x^3") == x**3
    assert sympify("x^3", convert_xor=False) == Xor(x, 3)
    assert sympify("1/2") == Rational(1, 2)

    pytest.raises(SympifyError, lambda: sympify('x**3', strict=True))
    pytest.raises(SympifyError, lambda: sympify('1/2', strict=True))
Пример #2
0
def test_fcode_precedence():
    assert fcode(And(x < y, y < x + 1), source_format='free') == \
        'x < y .and. y < x + 1'
    assert fcode(Or(x < y, y < x + 1), source_format='free') == \
        'x < y .or. y < x + 1'
    assert fcode(Xor(x < y, y < x + 1, evaluate=False),
                 source_format='free') == 'x < y .neqv. y < x + 1'
    assert fcode(Equivalent(x < y, y < x + 1), source_format='free') == \
        'x < y .eqv. y < x + 1'
Пример #3
0
def test_overloading():
    """Test that |, & are overloaded as expected."""
    assert A & B == And(A, B)
    assert A | B == Or(A, B)
    assert (A & B) | C == Or(And(A, B), C)
    assert A >> B == Implies(A, B)
    assert A << B == Implies(B, A)
    assert ~A == Not(A)
    assert A ^ B == Xor(A, B)
Пример #4
0
def test_relational_logic_symbols():
    # See issue sympy/sympy#6204
    assert (x < y) & (z < t) == And(x < y, z < t)
    assert (x < y) | (z < t) == Or(x < y, z < t)
    assert ~(x < y) == Not(x < y)
    assert (x < y) >> (z < t) == Implies(x < y, z < t)
    assert (x < y) << (z < t) == Implies(z < t, x < y)
    assert (x < y) ^ (z < t) == Xor(x < y, z < t)

    assert isinstance((x < y) & (z < t), And)
    assert isinstance((x < y) | (z < t), Or)
    assert isinstance(~(x < y), GreaterThan)
    assert isinstance((x < y) >> (z < t), Implies)
    assert isinstance((x < y) << (z < t), Implies)
    assert isinstance((x < y) ^ (z < t), (Or, Xor))
Пример #5
0
def test_operators():
    # Mostly test __and__, __rand__, and so on
    assert True & A == (A & True) == A
    assert False & A == (A & False) == false
    assert A & B == And(A, B)
    assert True | A == (A | True) == true
    assert False | A == (A | False) == A
    assert A | B == Or(A, B)
    assert ~A == Not(A)
    assert True >> A == (A << True) == A
    assert False >> A == (A << False) == true
    assert (A >> True) == (True << A) == true
    assert (A >> False) == (False << A) == ~A
    assert A >> B == B << A == Implies(A, B)
    assert True ^ A == A ^ True == ~A
    assert False ^ A == (A ^ False) == A
    assert A ^ B == Xor(A, B)
Пример #6
0
def test_count_ops_non_visual():
    def count(val):
        return count_ops(val, visual=False)
    assert count(x) == 0
    assert count(x) is not Integer(0)
    assert count(x + y) == 1
    assert count(x + y) is not Integer(1)
    assert count(x + y*x + 2*y) == 4
    assert count({x + y: x}) == 1
    assert count({x + y: 2 + x}) is not Integer(1)
    assert count(Or(x, y)) == 1
    assert count(And(x, y)) == 1
    assert count(Not(x)) == 1
    assert count(Nor(x, y)) == 2
    assert count(Nand(x, y)) == 2
    assert count(Xor(x, y)) == 1
    assert count(Implies(x, y)) == 1
    assert count(Equivalent(x, y)) == 1
    assert count(ITE(x, y, z)) == 1
    assert count(ITE(True, x, y)) == 0
Пример #7
0
def test_fcode_Xlogical():
    # binary Xor
    assert fcode(Xor(x, y, evaluate=False), source_format='free') == \
        'x .neqv. y'
    assert fcode(Xor(x, Not(y), evaluate=False), source_format='free') == \
        'x .neqv. .not. y'
    assert fcode(Xor(Not(x), y, evaluate=False), source_format='free') == \
        'y .neqv. .not. x'
    assert fcode(Xor(Not(x), Not(y), evaluate=False),
                 source_format='free') == '.not. x .neqv. .not. y'
    assert fcode(Not(Xor(x, y, evaluate=False), evaluate=False),
                 source_format='free') == '.not. (x .neqv. y)'
    # binary Equivalent
    assert fcode(Equivalent(x, y), source_format='free') == 'x .eqv. y'
    assert fcode(Equivalent(x, Not(y)), source_format='free') == \
        'x .eqv. .not. y'
    assert fcode(Equivalent(Not(x), y), source_format='free') == \
        'y .eqv. .not. x'
    assert fcode(Equivalent(Not(x), Not(y)), source_format='free') == \
        '.not. x .eqv. .not. y'
    assert fcode(Not(Equivalent(x, y), evaluate=False),
                 source_format='free') == '.not. (x .eqv. y)'
    # mixed And/Equivalent
    assert fcode(Equivalent(And(y, z), x), source_format='free') == \
        'x .eqv. y .and. z'
    assert fcode(Equivalent(And(z, x), y), source_format='free') == \
        'y .eqv. x .and. z'
    assert fcode(Equivalent(And(x, y), z), source_format='free') == \
        'z .eqv. x .and. y'
    assert fcode(And(Equivalent(y, z), x), source_format='free') == \
        'x .and. (y .eqv. z)'
    assert fcode(And(Equivalent(z, x), y), source_format='free') == \
        'y .and. (x .eqv. z)'
    assert fcode(And(Equivalent(x, y), z), source_format='free') == \
        'z .and. (x .eqv. y)'
    # mixed Or/Equivalent
    assert fcode(Equivalent(Or(y, z), x), source_format='free') == \
        'x .eqv. y .or. z'
    assert fcode(Equivalent(Or(z, x), y), source_format='free') == \
        'y .eqv. x .or. z'
    assert fcode(Equivalent(Or(x, y), z), source_format='free') == \
        'z .eqv. x .or. y'
    assert fcode(Or(Equivalent(y, z), x), source_format='free') == \
        'x .or. (y .eqv. z)'
    assert fcode(Or(Equivalent(z, x), y), source_format='free') == \
        'y .or. (x .eqv. z)'
    assert fcode(Or(Equivalent(x, y), z), source_format='free') == \
        'z .or. (x .eqv. y)'
    # mixed Xor/Equivalent
    assert fcode(Equivalent(Xor(y, z, evaluate=False), x),
                 source_format='free') == 'x .eqv. (y .neqv. z)'
    assert fcode(Equivalent(Xor(z, x, evaluate=False), y),
                 source_format='free') == 'y .eqv. (x .neqv. z)'
    assert fcode(Equivalent(Xor(x, y, evaluate=False), z),
                 source_format='free') == 'z .eqv. (x .neqv. y)'
    assert fcode(Xor(Equivalent(y, z), x, evaluate=False),
                 source_format='free') == 'x .neqv. (y .eqv. z)'
    assert fcode(Xor(Equivalent(z, x), y, evaluate=False),
                 source_format='free') == 'y .neqv. (x .eqv. z)'
    assert fcode(Xor(Equivalent(x, y), z, evaluate=False),
                 source_format='free') == 'z .neqv. (x .eqv. y)'
    # mixed And/Xor
    assert fcode(Xor(And(y, z), x, evaluate=False), source_format='free') == \
        'x .neqv. y .and. z'
    assert fcode(Xor(And(z, x), y, evaluate=False), source_format='free') == \
        'y .neqv. x .and. z'
    assert fcode(Xor(And(x, y), z, evaluate=False), source_format='free') == \
        'z .neqv. x .and. y'
    assert fcode(And(Xor(y, z, evaluate=False), x), source_format='free') == \
        'x .and. (y .neqv. z)'
    assert fcode(And(Xor(z, x, evaluate=False), y), source_format='free') == \
        'y .and. (x .neqv. z)'
    assert fcode(And(Xor(x, y, evaluate=False), z), source_format='free') == \
        'z .and. (x .neqv. y)'
    # mixed Or/Xor
    assert fcode(Xor(Or(y, z), x, evaluate=False), source_format='free') == \
        'x .neqv. y .or. z'
    assert fcode(Xor(Or(z, x), y, evaluate=False), source_format='free') == \
        'y .neqv. x .or. z'
    assert fcode(Xor(Or(x, y), z, evaluate=False), source_format='free') == \
        'z .neqv. x .or. y'
    assert fcode(Or(Xor(y, z, evaluate=False), x), source_format='free') == \
        'x .or. (y .neqv. z)'
    assert fcode(Or(Xor(z, x, evaluate=False), y), source_format='free') == \
        'y .or. (x .neqv. z)'
    assert fcode(Or(Xor(x, y, evaluate=False), z), source_format='free') == \
        'z .or. (x .neqv. y)'
    # trinary Xor
    assert fcode(Xor(x, y, z, evaluate=False), source_format='free') == \
        'x .neqv. y .neqv. z'
    assert fcode(Xor(x, y, Not(z), evaluate=False), source_format='free') == \
        'x .neqv. y .neqv. .not. z'
    assert fcode(Xor(x, Not(y), z, evaluate=False), source_format='free') == \
        'x .neqv. z .neqv. .not. y'
    assert fcode(Xor(Not(x), y, z, evaluate=False), source_format='free') == \
        'y .neqv. z .neqv. .not. x'
Пример #8
0
def test_Xor():
    assert str(Xor(y, x, evaluate=False)) == "Xor(x, y)"
Пример #9
0
def test_Xor():
    assert Xor() is false
    assert Xor(a) == a
    assert Xor(a, a) is false
    assert Xor(True, a, a) is true
    assert Xor(a, a, a, a, a) == a
    assert Xor(True, False, False, a, b) == ~Xor(a, b)
    assert Xor(True) is true
    assert Xor(False) is false
    assert Xor(True, True) is false
    assert Xor(True, False) is true
    assert Xor(False, False) is false
    assert Xor(True, a) == ~a
    assert Xor(False, a) == a
    assert Xor(True, False, False) is true
    assert Xor(True, False, a) == ~a
    assert Xor(False, False, a) == a
    assert isinstance(Xor(a, b), Xor)
    assert Xor(a, b, Xor(c, d)) == Xor(a, b, c, d)
    assert Xor(a, b, Xor(b, c)) == Xor(a, c)
    assert Xor(a < 1, a >= 1, b) == Xor(0, 1, b) == Xor(1, 0, b)

    e = a > 1
    assert Xor(e, e.canonical) == Xor(0, 0) == Xor(1, 1)

    e = Integer(1) < a
    assert e != e.canonical and Xor(e, e.canonical) is false

    assert Xor(a > 1, b > c) == Xor(a > 1, b > c, evaluate=False)
Пример #10
0
def test_true_false():
    # pylint: disable=singleton-comparison,comparison-with-itself
    assert true is true
    assert false is false
    assert true is not True
    assert false is not False
    assert true
    assert not false
    assert true == True  # noqa: E712
    assert false == False  # noqa: E712
    assert not true == False  # noqa: E712
    assert not false == True  # noqa: E712
    assert not true == false

    assert hash(true) == hash(True)
    assert hash(false) == hash(False)
    assert len({true, True}) == len({false, False}) == 1

    assert int(true) == 1
    assert int(false) == 0

    assert isinstance(true, BooleanAtom)
    assert isinstance(false, BooleanAtom)

    assert not isinstance(true, bool)
    assert not isinstance(false, bool)

    assert ~true is false
    assert Not(True) is false
    assert ~false is true
    assert Not(False) is true

    for T, F in itertools.product([True, true], [False, false]):
        assert And(T, F) is false
        assert And(F, T) is false
        assert And(F, F) is false
        assert And(T, T) is true
        assert And(T, x) == x
        assert And(F, x) is false
        if not (T is True and F is False):
            assert T & F is false
            assert F & T is false
        if F is not False:
            assert F & F is false
        if T is not True:
            assert T & T is true

        assert Or(T, F) is true
        assert Or(F, T) is true
        assert Or(F, F) is false
        assert Or(T, T) is true
        assert Or(T, x) is true
        assert Or(F, x) == x
        if not (T is True and F is False):
            assert T | F is true
            assert F | T is true
        if F is not False:
            assert F | F is false
        if T is not True:
            assert T | T is true

        assert Xor(T, F) is true
        assert Xor(F, T) is true
        assert Xor(F, F) is false
        assert Xor(T, T) is false
        assert Xor(T, x) == ~x
        assert Xor(F, x) == x
        if not (T is True and F is False):
            assert T ^ F is true
            assert F ^ T is true
        if F is not False:
            assert F ^ F is false
        if T is not True:
            assert T ^ T is false

        assert Nand(T, F) is true
        assert Nand(F, T) is true
        assert Nand(F, F) is true
        assert Nand(T, T) is false
        assert Nand(T, x) == ~x
        assert Nand(F, x) is true

        assert Nor(T, F) is false
        assert Nor(F, T) is false
        assert Nor(F, F) is true
        assert Nor(T, T) is false
        assert Nor(T, x) is false
        assert Nor(F, x) == ~x

        assert Implies(T, F) is false
        assert Implies(F, T) is true
        assert Implies(F, F) is true
        assert Implies(T, T) is true
        assert Implies(T, x) == x
        assert Implies(F, x) is true
        assert Implies(x, T) is true
        assert Implies(x, F) == ~x
        if not (T is True and F is False):
            assert T >> F is false
            assert F << T is false
            assert F >> T is true
            assert T << F is true
        if F is not False:
            assert F >> F is true
            assert F << F is true
        if T is not True:
            assert T >> T is true
            assert T << T is true

        assert Equivalent(T, F) is false
        assert Equivalent(F, T) is false
        assert Equivalent(F, F) is true
        assert Equivalent(T, T) is true
        assert Equivalent(T, x) == x
        assert Equivalent(F, x) == ~x
        assert Equivalent(x, T) == x
        assert Equivalent(x, F) == ~x

        assert ITE(T, T, T) is true
        assert ITE(T, T, F) is true
        assert ITE(T, F, T) is false
        assert ITE(T, F, F) is false
        assert ITE(F, T, T) is true
        assert ITE(F, T, F) is false
        assert ITE(F, F, T) is true
        assert ITE(F, F, F) is false
Пример #11
0
def test_overloading():
    assert a & b == And(a, b)
    assert a | b == Or(a, b)
    assert a >> b == Implies(a, b)
    assert ~a == Not(a)
    assert a ^ b == Xor(a, b)
Пример #12
0
def test_count_ops_visual():
    ADD, MUL, POW, SIN, COS, AND, D, G = symbols(
        'Add Mul Pow sin cos And Derivative Integral'.upper())
    DIV, SUB, NEG = symbols('DIV SUB NEG')
    NOT, OR, AND, XOR, IMPLIES, EQUIVALENT, _ITE, BASIC, TUPLE = symbols(
        'Not Or And Xor Implies Equivalent ITE Basic Tuple'.upper())

    def count(val):
        return count_ops(val, visual=True)

    assert count(7) is Integer(0)
    assert count(-1) == NEG
    assert count(-2) == NEG
    assert count(Rational(2, 3)) == DIV
    assert count(pi / 3) == DIV
    assert count(-pi / 3) == DIV + NEG
    assert count(I - 1) == SUB
    assert count(1 - I) == SUB
    assert count(1 - 2 * I) == SUB + MUL

    assert count(x) is Integer(0)
    assert count(-x) == NEG
    assert count(-2 * x / 3) == NEG + DIV + MUL
    assert count(1 / x) == DIV
    assert count(1 / (x * y)) == DIV + MUL
    assert count(-1 / x) == NEG + DIV
    assert count(-2 / x) == NEG + DIV
    assert count(x / y) == DIV
    assert count(-x / y) == NEG + DIV

    assert count(x**2) == POW
    assert count(-x**2) == POW + NEG
    assert count(-2 * x**2) == POW + MUL + NEG

    assert count(x + pi / 3) == ADD + DIV
    assert count(x + Rational(1, 3)) == ADD + DIV
    assert count(x + y) == ADD
    assert count(x - y) == SUB
    assert count(y - x) == SUB
    assert count(-1 / (x - y)) == DIV + NEG + SUB
    assert count(-1 / (y - x)) == DIV + NEG + SUB
    assert count(1 + x**y) == ADD + POW
    assert count(1 + x + y) == 2 * ADD
    assert count(1 + x + y + z) == 3 * ADD
    assert count(1 + x**y + 2 * x * y + y**2) == 3 * ADD + 2 * POW + 2 * MUL
    assert count(2 * z + y + x + 1) == 3 * ADD + MUL
    assert count(2 * z + y**17 + x + 1) == 3 * ADD + MUL + POW
    assert count(2 * z + y**17 + x + sin(x)) == 3 * ADD + POW + MUL + SIN
    assert count(2 * z + y**17 + x +
                 sin(x**2)) == 3 * ADD + MUL + 2 * POW + SIN
    assert count(2 * z + y**17 + x + sin(x**2) +
                 exp(cos(x))) == 4 * ADD + MUL + 3 * POW + COS + SIN

    assert count(Derivative(x, x)) == D
    assert count(Integral(x, x) + 2 * x / (1 + x)) == G + DIV + MUL + 2 * ADD
    assert count(Basic()) is Integer(0)

    assert count({x + 1: sin(x)}) == ADD + SIN
    assert count([x + 1, sin(x) + y, None]) == ADD + SIN + ADD
    assert count({x + 1: sin(x), y: cos(x) + 1}) == SIN + COS + 2 * ADD
    assert count({}) is Integer(0)
    assert count([x + 1, sin(x) * y, None]) == SIN + ADD + MUL
    assert count([]) is Integer(0)

    assert count(Basic()) == 0
    assert count(Basic(Basic(), Basic(x, x + y))) == ADD + 2 * BASIC
    assert count(Basic(x, x + y)) == ADD + BASIC
    assert count(Or(x, y)) == OR
    assert count(And(x, y)) == AND
    assert count(And(x**y, z)) == AND + POW
    assert count(Or(x, Or(y, And(z, a)))) == AND + OR
    assert count(Nor(x, y)) == NOT + OR
    assert count(Nand(x, y)) == NOT + AND
    assert count(Xor(x, y)) == XOR
    assert count(Implies(x, y)) == IMPLIES
    assert count(Equivalent(x, y)) == EQUIVALENT
    assert count(ITE(x, y, z)) == _ITE
    assert count([Or(x, y), And(x, y), Basic(x + y)]) == ADD + AND + BASIC + OR

    assert count(Basic(Tuple(x))) == BASIC + TUPLE
    # It checks that TUPLE is counted as an operation.

    assert count(Eq(x + y, 2)) == ADD
Пример #13
0
def test_logic():
    p = NumPyPrinter()
    assert p.doprint(And(a, b, c)) == 'logical_and(logical_and(a, b), c)'
    assert p.doprint(Or(a, b, c)) == 'logical_or(logical_or(a, b), c)'
    assert p.doprint(Xor(a, b, c)) == 'logical_xor(logical_xor(a, b), c)'
Пример #14
0
def test_Xor():

    assert Xor() is false
    assert Xor(A) == A
    assert Xor(A, A) is false
    assert Xor(True, A, A) is true
    assert Xor(A, A, A, A, A) == A
    assert Xor(True, False, False, A, B) == ~Xor(A, B)
    assert Xor(True) is true
    assert Xor(False) is false
    assert Xor(True, True) is false
    assert Xor(True, False) is true
    assert Xor(False, False) is false
    assert Xor(True, A) == ~A
    assert Xor(False, A) == A
    assert Xor(True, False, False) is true
    assert Xor(True, False, A) == ~A
    assert Xor(False, False, A) == A
    assert isinstance(Xor(A, B), Xor)
    assert Xor(A, B, Xor(C, D)) == Xor(A, B, C, D)
    assert Xor(A, B, Xor(B, C)) == Xor(A, C)
    assert Xor(A < 1, A >= 1, B) == Xor(0, 1, B) == Xor(1, 0, B)
    e = A > 1
    assert Xor(e, e.canonical) == Xor(0, 0) == Xor(1, 1)
    e = Integer(1) < A
    assert e != e.canonical and Xor(e, e.canonical) is false
    assert Xor(A > 1, B > C) == Xor(A > 1, B > C, evaluate=False)
Пример #15
0
def test_true_false():
    assert true is true
    assert false is false
    assert true is not True
    assert false is not False
    assert true
    assert not false
    assert true == True  # noqa: E712
    assert false == False  # noqa: E712
    assert not (true == False)  # noqa: E712
    assert not (false == True)  # noqa: E712
    assert not (true == false)

    assert hash(true) == hash(True)
    assert hash(false) == hash(False)
    assert len({true, True}) == len({false, False}) == 1

    assert isinstance(true, BooleanAtom)
    assert isinstance(false, BooleanAtom)
    # We don't want to subclass from bool, because bool subclasses from
    # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and
    # 1 then we want them to on true and false.  See the docstrings of the
    # various And, Or, etc. functions for examples.
    assert not isinstance(true, bool)
    assert not isinstance(false, bool)

    # Note: using 'is' comparison is important here. We want these to return
    # true and false, not True and False

    assert Not(true) is false
    assert Not(True) is false
    assert Not(false) is true
    assert Not(False) is true
    assert ~true is false
    assert ~false is true

    for T, F in itertools.product([True, true], [False, false]):
        assert And(T, F) is false
        assert And(F, T) is false
        assert And(F, F) is false
        assert And(T, T) is true
        assert And(T, x) == x
        assert And(F, x) is false
        if not (T is True and F is False):
            assert T & F is false
            assert F & T is false
        if F is not False:
            assert F & F is false
        if T is not True:
            assert T & T is true

        assert Or(T, F) is true
        assert Or(F, T) is true
        assert Or(F, F) is false
        assert Or(T, T) is true
        assert Or(T, x) is true
        assert Or(F, x) == x
        if not (T is True and F is False):
            assert T | F is true
            assert F | T is true
        if F is not False:
            assert F | F is false
        if T is not True:
            assert T | T is true

        assert Xor(T, F) is true
        assert Xor(F, T) is true
        assert Xor(F, F) is false
        assert Xor(T, T) is false
        assert Xor(T, x) == ~x
        assert Xor(F, x) == x
        if not (T is True and F is False):
            assert T ^ F is true
            assert F ^ T is true
        if F is not False:
            assert F ^ F is false
        if T is not True:
            assert T ^ T is false

        assert Nand(T, F) is true
        assert Nand(F, T) is true
        assert Nand(F, F) is true
        assert Nand(T, T) is false
        assert Nand(T, x) == ~x
        assert Nand(F, x) is true

        assert Nor(T, F) is false
        assert Nor(F, T) is false
        assert Nor(F, F) is true
        assert Nor(T, T) is false
        assert Nor(T, x) is false
        assert Nor(F, x) == ~x

        assert Implies(T, F) is false
        assert Implies(F, T) is true
        assert Implies(F, F) is true
        assert Implies(T, T) is true
        assert Implies(T, x) == x
        assert Implies(F, x) is true
        assert Implies(x, T) is true
        assert Implies(x, F) == ~x
        if not (T is True and F is False):
            assert T >> F is false
            assert F << T is false
            assert F >> T is true
            assert T << F is true
        if F is not False:
            assert F >> F is true
            assert F << F is true
        if T is not True:
            assert T >> T is true
            assert T << T is true

        assert Equivalent(T, F) is false
        assert Equivalent(F, T) is false
        assert Equivalent(F, F) is true
        assert Equivalent(T, T) is true
        assert Equivalent(T, x) == x
        assert Equivalent(F, x) == ~x
        assert Equivalent(x, T) == x
        assert Equivalent(x, F) == ~x

        assert ITE(T, T, T) is true
        assert ITE(T, T, F) is true
        assert ITE(T, F, T) is false
        assert ITE(T, F, F) is false
        assert ITE(F, T, T) is true
        assert ITE(F, T, F) is false
        assert ITE(F, F, T) is true
        assert ITE(F, F, F) is false