def get_dataset(): cache_file = 'dataset_cache.pkl.gz') if os.path.exists(cache_file): with open(cache_file, 'rb') as f: dataset = pickle.load(f) return dataset['data'], dataset['target'] raw_dataset = load_raw_images() data = load_image_files(raw_dataset.filenames) data = np.array(list(data)) mask_dataset = load_mask_images() masks = load_image_files(mask_dataset.filenames) target = convert_masks_to_target(masks, negative=True) with open(cache_file, 'wb') as f: dataset = {'data': data, 'target': target} pickle.dump(dataset, f) return data, target
from skimage.transform import resize from dip.load_data import load_raw_images, load_mask_images parser = argparse.ArgumentParser() parser.add_argument('--shape0', type=int, default=1424) parser.add_argument('--shape1', type=int, default=2136) args = parser.parse_args() shape = (args.shape0, args.shape1) raw_dataset = load_raw_images() for i, f in enumerate(raw_dataset.filenames): print(f) img = io.imread(f) if i == 0: print('resize: {0} -> {1}'.format(img.shape[:2], shape)) resized = resize(img, output_shape=shape) io.imsave(f, resized) mask_dataset = load_mask_images() for i, f in enumerate(mask_dataset.filenames): print(f) img = io.imread(f) if i == 0: print('resize: {0} -> {1}'.format(img.shape[:2], shape)) resized = resize(img, output_shape=shape) io.imsave(f, resized)
from __future__ import print_function import collections import cPickle as pickle from future_builtins import zip import gzip import numpy as np from skimage import io from sklearn.datasets.base import Bunch from dip.load_data import load_image_files, load_mask_images from dip.mask import bounding_rect_of_mask datasets = load_mask_images() data = [] for f, mask in zip( datasets.filenames, load_image_files(datasets.filenames), ): # rect: (min_x, max_x, min_y, max_x) rect = bounding_rect_of_mask(mask, negative=True) data.append(list(rect)) print('{0}: {1}'.format(f, rect)) bunch = Bunch(name='mask rects') bunch.data = np.array(data) bunch.filenames = datasets.filenames bunch.target = datasets.target