Пример #1
0
class InvSigmoid(nn.Module):

    """Pointwise :math:`s^{-1}(x) = \log(x / (1-x))`."""

    def __init__(self, a=None):
        """Initialize a new instance.

        Examples
        --------
        >>> invsig = InvSigmoid()
        >>> xvals = [1 / (1 + np.exp(-1)), 1 / (1 + np.exp(-3))]
        >>> x = autograd.Variable(torch.Tensor(xvals))
        >>> invsig(x)  # should be [1, 3]
        Variable containing:
         1.0000
         3.0000
        [torch.FloatTensor of size 2]
        """
        super(InvSigmoid, self).__init__()

    def forward(self, x):
        return torch.log(x / (1 - x))


if __name__ == '__main__':
    from dipp.util.testutils import run_doctests
    from torch import autograd
    import numpy as np
    extraglobs = {'np': np, 'autograd': autograd}
    run_doctests(extraglobs=extraglobs)
Пример #2
0
                raise ValueError('`init_c` must be provided for `c=None`')
            self.c = nn.Parameter(torch.Tensor([init_c]))
        elif isinstance(c, nn.Parameter):
            self.c = c
        else:
            assert c > 0
            self.c = float(c)

        # Sharing the `a` and `c` parameters with the constituting modules
        self.inv_sigmoid = InvSigmoid()
        self.local_sim_ax0 = HaarPSISimilarityMap(0, self.a, self.c)
        self.local_sim_ax1 = HaarPSISimilarityMap(1, self.a, self.c)
        self.wmap_ax0 = HaarPSIWeightMap(0)
        self.wmap_ax1 = HaarPSIWeightMap(1)

    def forward(self, x, y):
        wmap_ax0 = self.wmap_ax0(x, y)
        wmap_ax1 = self.wmap_ax1(x, y)

        numer = torch.sum(
            self.local_sim_ax0(x, y) * wmap_ax0 +
            self.local_sim_ax1(x, y) * wmap_ax1)
        denom = torch.sum(wmap_ax0 + wmap_ax1)

        return (self.inv_sigmoid(numer / denom) / self.a) ** 2


if __name__ == '__main__':
    from dipp.util.testutils import run_doctests
    run_doctests()
Пример #3
0
    num_digits = int(np.ceil(np.log10(max(len(modules) - 1, 1))))
    idx_fmt = '{{:<{}}}'.format(num_digits)

    for i, entry in summary.items():
        if i == 0:
            print('=== Summary of {} ==='.format(entry['name']))
            print('Input shapes :', [shape_str(s) for s in entry['shapes_in']])
            print('Output shapes:',
                  [shape_str(s) for s in entry['shapes_out']])
            print('# of params  :', entry['num_params'])
        else:
            print()
            if verbose:
                print(idx_fmt.format(i - 1) + ': ' + entry['repr'])
            else:
                print(idx_fmt.format(i - 1) + ': ' + entry['name'])
            print('Input shapes :', [shape_str(s) for s in entry['shapes_in']])
            print('Output shapes:',
                  [shape_str(s) for s in entry['shapes_out']])
            print('# of params  :', entry['num_params'])

    if return_summary:
        return summary


if __name__ == '__main__':
    from dipp.util.testutils import run_doctests
    import torch
    run_doctests(extraglobs={'torch': torch, 'nn': torch.nn})