Пример #1
0
def test_joint_pdf_gradients_sparse():
    h = 1e-4

    # Make sure dictionary entries are processed in the same order regardless
    # of the platform. Otherwise any random numbers drawn within the loop
    # would make the test non-deterministic even if we fix the seed before
    # the loop.Right now, this test does not draw any samples, but we still
    # sort the entries to prevent future related failures.

    for ttype in sorted(factors):
        dim = ttype[1]
        if dim == 2:
            nslices = 1
            interp_method = interpolate_scalar_2d
        else:
            nslices = 45
            interp_method = interpolate_scalar_3d

        transform = regtransforms[ttype]
        factor = factors[ttype]
        theta = transform.get_identity_parameters()

        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 5.0)
        parzen_hist = ParzenJointHistogram(32)
        parzen_hist.setup(static, moving, smask, mmask)

        # Sample the fixed-image domain
        k = 3
        sigma = 0.25
        seed = 1234
        shape = np.array(static.shape, dtype=np.int32)
        samples = sample_domain_regular(k, shape, static_g2w, sigma, seed)
        samples = np.array(samples)
        samples = np.hstack((samples, np.ones(samples.shape[0])[:, None]))
        sp_to_static = np.linalg.inv(static_g2w)
        samples_static_grid = (sp_to_static.dot(samples.T).T)[..., :dim]
        intensities_static, inside = interp_method(static.astype(np.float32),
                                                   samples_static_grid)
        # The routines in vector_fields operate, mostly, with float32 because
        # they were thought to be used for non-linear registration. We may need
        # to write some float64 counterparts for affine registration, where
        # memory is not so big issue
        intensities_static = np.array(intensities_static, dtype=np.float64)

        # Compute the gradient at theta with the implementation under test
        M = transform.param_to_matrix(theta)
        sp_to_moving = np.linalg.inv(moving_g2w).dot(M)
        samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
        intensities_moving, inside = interp_method(moving.astype(np.float32),
                                                   samples_moving_grid)
        intensities_moving = np.array(intensities_moving, dtype=np.float64)
        parzen_hist.update_pdfs_sparse(intensities_static, intensities_moving)
        # Get the joint distribution evaluated at theta
        J0 = np.copy(parzen_hist.joint)

        spacing = np.ones(dim + 1, dtype=np.float64)
        mgrad, inside = vf.sparse_gradient(moving.astype(np.float32),
                                           sp_to_moving, spacing, samples)
        parzen_hist.update_gradient_sparse(theta, transform,
                                           intensities_static,
                                           intensities_moving,
                                           samples[..., :dim], mgrad)
        # Get the gradient of the joint distribution w.r.t. the transform
        # parameters
        actual = np.copy(parzen_hist.joint_grad)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty_like(actual)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h
            # Update the joint distribution with the transformed moving image
            M = transform.param_to_matrix(dtheta)
            sp_to_moving = np.linalg.inv(moving_g2w).dot(M)
            samples_moving_grid = sp_to_moving.dot(samples.T).T
            intensities_moving, inside = \
                interp_method(moving.astype(np.float32), samples_moving_grid)
            intensities_moving = np.array(intensities_moving, dtype=np.float64)
            parzen_hist.update_pdfs_sparse(intensities_static,
                                           intensities_moving)
            J1 = np.copy(parzen_hist.joint)
            expected[..., i] = (J1 - J0) / h

        # Dot product and norms of gradients of each joint histogram cell
        # i.e. the derivatives of each cell w.r.t. all parameters
        P = (expected * actual).sum(2)
        enorms = np.sqrt((expected**2).sum(2))
        anorms = np.sqrt((actual**2).sum(2))
        prodnorms = enorms * anorms
        # Cosine of angle between the expected and actual gradients.
        # Exclude very small gradients
        P[prodnorms > 1e-6] /= (prodnorms[prodnorms > 1e-6])
        P[prodnorms <= 1e-6] = 0
        # Verify that a large proportion of the gradients point almost in
        # the same direction. Disregard very small gradients
        mean_cosine = P[P != 0].mean()
        std_cosine = P[P != 0].std()
        assert (mean_cosine > 0.99)
        assert (std_cosine < 0.15)
Пример #2
0
def test_mi_gradient_sparse():
    # Test the gradient of mutual information
    h = 1e-5
    for ttype in factors:
        transform = regtransforms[ttype]
        dim = ttype[1]
        if dim == 2:
            nslices = 1
            interp_method = vf.interpolate_scalar_2d
        else:
            nslices = 45
            interp_method = vf.interpolate_scalar_3d
        # Get data (pair of images related to each other by an known transform)
        factor = factors[ttype]
        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 5.0)
        smask = None
        mmask = None

        # Sample static domain
        k = 3
        sigma = 0.25
        seed = 1234
        shape = np.array(static.shape, dtype=np.int32)
        samples = sample_domain_regular(k, shape, static_g2w, sigma, seed)
        samples = np.array(samples)
        samples = np.hstack((samples, np.ones(samples.shape[0])[:, None]))
        sp_to_static = np.linalg.inv(static_g2w)
        samples_static_grid = (sp_to_static.dot(samples.T).T)[..., :dim]
        intensities_static, inside = interp_method(static.astype(np.float32),
                                                   samples_static_grid)
        intensities_static = np.array(intensities_static, dtype=np.float64)

        # Prepare a MattesBase instance
        # The computation of the metric is done in 3 steps:
        # 1.Compute the joint distribution
        # 2.Compute the gradient of the joint distribution
        # 3.Compute the metric's value and gradient using results from 1 and 2
        metric = MattesBase(32)
        metric.setup(static, moving, smask, mmask)

        # 1. Update the joint distribution
        sp_to_moving = np.linalg.inv(moving_g2w)
        samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
        intensities_moving, inside = interp_method(moving.astype(np.float32),
                                                   samples_moving_grid)
        intensities_moving = np.array(intensities_moving, dtype=np.float64)
        metric.update_pdfs_sparse(intensities_static, intensities_moving)

        # 2. Update the joint distribution gradient (the derivative of each
        # histogram cell w.r.t. the transform parameters). This requires
        # to evaluate the gradient of the moving image at the sampling points
        theta = transform.get_identity_parameters().copy()
        spacing = np.ones(dim, dtype=np.float64)
        shape = np.array(static.shape, dtype=np.int32)
        mgrad, inside = vf.sparse_gradient(moving.astype(np.float32),
                                           sp_to_moving,
                                           spacing,
                                           samples[..., :dim])
        metric.update_gradient_sparse(theta, transform, intensities_static,
                                      intensities_moving,
                                      samples[..., :dim],
                                      mgrad)

        # 3. Update the metric (in this case, the Mutual Information) and its
        # gradient, which is computed from the joint density and its gradient
        metric.update_mi_metric(update_gradient=True)

        # Now we can extract the value and gradient of the metric
        # This is the gradient according to the implementation under test
        val0 = metric.metric_val
        actual = np.copy(metric.metric_grad)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty_like(actual)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h

            M = transform.param_to_matrix(dtheta)
            shape = np.array(static.shape, dtype=np.int32)
            sp_to_moving = np.linalg.inv(moving_g2w).dot(M)
            samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
            intensities_moving, inside =\
                interp_method(moving.astype(np.float32), samples_moving_grid)
            intensities_moving = np.array(intensities_moving, dtype=np.float64)
            metric.update_pdfs_sparse(intensities_static, intensities_moving)
            metric.update_mi_metric(update_gradient=False)
            val1 = metric.metric_val
            expected[i] = (val1 - val0) / h

        dp = expected.dot(actual)
        enorm = np.linalg.norm(expected)
        anorm = np.linalg.norm(actual)
        nprod = dp / (enorm * anorm)
        assert(nprod > 0.9999)
Пример #3
0
def test_joint_pdf_gradients_sparse():
    h = 1e-4
    for ttype in factors:
        dim = ttype[1]
        if dim == 2:
            nslices = 1
            interp_method = vf.interpolate_scalar_2d
        else:
            nslices = 45
            interp_method = vf.interpolate_scalar_3d

        transform = regtransforms[ttype]
        factor = factors[ttype]
        theta = transform.get_identity_parameters()

        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 5.0)
        metric = MattesBase(32)
        metric.setup(static, moving, smask, mmask)

        # Sample the fixed-image domain
        k = 3
        sigma = 0.25
        seed = 1234
        shape = np.array(static.shape, dtype=np.int32)
        samples = sample_domain_regular(k, shape, static_g2w, sigma, seed)
        samples = np.array(samples)
        samples = np.hstack((samples, np.ones(samples.shape[0])[:, None]))
        sp_to_static = np.linalg.inv(static_g2w)
        samples_static_grid = (sp_to_static.dot(samples.T).T)[..., :dim]
        intensities_static, inside = interp_method(static.astype(np.float32),
                                                   samples_static_grid)
        # The routines in vector_fields operate, mostly, with float32 because
        # they were thought to be used for non-linear registration. We may need
        # to write some float64 counterparts for affine registration, where
        # memory is not so big issue
        intensities_static = np.array(intensities_static, dtype=np.float64)

        # Compute the gradient at theta with the implementation under test
        M = transform.param_to_matrix(theta)
        sp_to_moving = np.linalg.inv(moving_g2w).dot(M)
        samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
        intensities_moving, inside = interp_method(moving.astype(np.float32),
                                                   samples_moving_grid)
        intensities_moving = np.array(intensities_moving, dtype=np.float64)
        metric.update_pdfs_sparse(intensities_static, intensities_moving)
        # Get the joint distribution evaluated at theta
        J0 = np.copy(metric.joint)

        spacing = np.ones(dim + 1, dtype=np.float64)
        mgrad, inside = vf.sparse_gradient(moving.astype(np.float32),
                                           sp_to_moving, spacing, samples)
        metric.update_gradient_sparse(theta, transform, intensities_static,
                                      intensities_moving, samples[..., :dim],
                                      mgrad)
        # Get the gradient of the joint distribution w.r.t. the transform
        # parameters
        actual = np.copy(metric.joint_grad)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty_like(actual)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h
            # Update the joint distribution with the warped moving image
            M = transform.param_to_matrix(dtheta)
            sp_to_moving = np.linalg.inv(moving_g2w).dot(M)
            samples_moving_grid = sp_to_moving.dot(samples.T).T
            intensities_moving, inside = \
                interp_method(moving.astype(np.float32), samples_moving_grid)
            intensities_moving = np.array(intensities_moving, dtype=np.float64)
            metric.update_pdfs_sparse(intensities_static, intensities_moving)
            J1 = np.copy(metric.joint)
            expected[..., i] = (J1 - J0) / h

        # Dot product and norms of gradients of each joint histogram cell
        # i.e. the derivatives of each cell w.r.t. all parameters
        P = (expected * actual).sum(2)
        enorms = np.sqrt((expected ** 2).sum(2))
        anorms = np.sqrt((actual ** 2).sum(2))
        prodnorms = enorms*anorms
        # Cosine of angle between the expected and actual gradients.
        # Exclude very small gradients
        P[prodnorms > 1e-6] /= (prodnorms[prodnorms > 1e-6])
        P[prodnorms <= 1e-6] = 0
        # Verify that a large proportion of the gradients point almost in
        # the same direction. Disregard very small gradients
        mean_cosine = P[P != 0].mean()
        std_cosine = P[P != 0].std()
        assert(mean_cosine > 0.99)
        assert(std_cosine < 0.15)
Пример #4
0
def test_gradient_3d():
    np.random.seed(3921116)
    shape = (25, 32, 15)
    # Create grid coordinates
    x_0 = np.asarray(range(shape[0]))
    x_1 = np.asarray(range(shape[1]))
    x_2 = np.asarray(range(shape[2]))
    X = np.zeros(shape + (4, ), dtype=np.float64)
    O = np.ones(shape)
    X[..., 0] = x_0[:, None, None] * O
    X[..., 1] = x_1[None, :, None] * O
    X[..., 2] = x_2[None, None, :] * O
    X[..., 3] = 1

    transform = regtransforms[("RIGID", 3)]
    theta = np.array([0.1, 0.05, 0.12, -12.0, -15.5, -7.2])
    T = transform.param_to_matrix(theta)

    TX = X.dot(T.T)
    # Eval an arbitrary (known) function at TX
    # f(x, y, z) = ax^2 + by^2 + cz^2 + dxy + exz + fyz
    # df/dx = 2ax + dy + ez
    # df/dy = 2by + dx + fz
    # df/dz = 2cz + ex + fy
    a, b, c = 2e-3, 3e-3, 1e-3
    d, e, f = 1e-3, 2e-3, 3e-3
    img = (a * TX[..., 0]**2 + b * TX[..., 1]**2 + c * TX[..., 2]**2 +
           d * TX[..., 0] * TX[..., 1] + e * TX[..., 0] * TX[..., 2] +
           f * TX[..., 1] * TX[..., 2])

    img = img.astype(floating)
    # Test sparse gradient: choose some sample points (in space)
    sample = sample_domain_regular(100, np.array(shape, dtype=np.int32), T)
    sample = np.array(sample)
    # Compute the analytical gradient at all points
    expected = np.empty((sample.shape[0], 3), dtype=floating)
    expected[...,
             0] = (2 * a * sample[:, 0] + d * sample[:, 1] + e * sample[:, 2])
    expected[...,
             1] = (2 * b * sample[:, 1] + d * sample[:, 0] + f * sample[:, 2])
    expected[...,
             2] = (2 * c * sample[:, 2] + e * sample[:, 0] + f * sample[:, 1])
    # Get the numerical gradient with the implementation under test
    sp_to_grid = np.linalg.inv(T)
    img_spacing = np.ones(3)
    actual, inside = vfu.sparse_gradient(img, sp_to_grid, img_spacing, sample)

    img_d = cupy.asarray(img)
    img_spacing_d = cupy.asarray(img_spacing)
    sp_to_grid_d = cupy.asarray(sp_to_grid)
    sample_d = cupy.asarray(sample)
    actual_gpu, inside_gpu = sparse_gradient(img_d, sp_to_grid_d,
                                             img_spacing_d, sample_d.T)
    atol = rtol = 1e-5
    cupy.testing.assert_allclose(
        actual * inside[..., np.newaxis],
        actual_gpu * inside_gpu[..., np.newaxis],
        atol=atol,
        rtol=rtol,
    )
    cupy.testing.assert_array_equal(inside, inside_gpu)

    # TODO: test invalid inputs
    # # Verify exception is raised when passing invalid affine or spacings
    # invalid_affine = np.eye(3)
    # invalid_spacings = np.ones(2)
    # assert_raises(ValueError, vfu.sparse_gradient, img, invalid_affine,
    #               img_spacing, sample)
    # assert_raises(ValueError, vfu.sparse_gradient, img, sp_to_grid,
    #               invalid_spacings, sample)

    # Test dense gradient
    # Compute the analytical gradient at all points
    expected = np.empty(shape + (3, ), dtype=floating)
    expected[..., 0] = 2 * a * TX[..., 0] + d * TX[..., 1] + e * TX[..., 2]
    expected[..., 1] = 2 * b * TX[..., 1] + d * TX[..., 0] + f * TX[..., 2]
    expected[..., 2] = 2 * c * TX[..., 2] + e * TX[..., 0] + f * TX[..., 1]
    # Get the numerical gradient with the implementation under test
    sp_to_grid = np.linalg.inv(T)
    img_spacing = np.ones(3)
    actual, inside = vfu.gradient(img, sp_to_grid, img_spacing, shape, T)

    sp_to_grid_d = cupy.asarray(sp_to_grid)
    img_spacing_d = cupy.asarray(img_spacing)
    T_d = cupy.asarray(T)
    actual_gpu, inside_gpu = gradient(img_d, sp_to_grid_d, img_spacing_d,
                                      shape, T_d)

    atol = rtol = 1e-5
    cupy.testing.assert_allclose(
        actual * inside[..., np.newaxis],
        actual_gpu * inside_gpu[..., np.newaxis],
        atol=atol,
        rtol=rtol,
    )
    cupy.testing.assert_array_equal(inside, inside_gpu)
Пример #5
0
def test_gradient_2d():
    np.random.seed(3921116)
    sh = (25, 32)
    # Create grid coordinates
    x_0 = np.arange(sh[0])
    x_1 = np.arange(sh[1])
    X = np.empty(sh + (3, ), dtype=np.float64)
    O = np.ones(sh)
    X[..., 0] = x_0[:, None] * O
    X[..., 1] = x_1[None, :] * O
    X[..., 2] = 1

    transform = regtransforms[("RIGID", 2)]
    theta = np.array([0.1, 5.0, 2.5])
    T = transform.param_to_matrix(theta)
    TX = X.dot(T.T)
    # Eval an arbitrary (known) function at TX
    # f(x, y) = ax^2 + bxy + cy^{2}
    # df/dx = 2ax + by
    # df/dy = 2cy + bx
    a = 2e-3
    b = 5e-3
    c = 7e-3
    img = (a * TX[..., 0]**2 + b * TX[..., 0] * TX[..., 1] + c * TX[..., 1]**2)
    img = img.astype(floating)
    # img is an image sampled at X with grid-to-space transform T

    # Test sparse gradient: choose some sample points (in space)
    sample = sample_domain_regular(20, np.array(sh, dtype=np.int32), T)
    sample = np.array(sample)
    # Compute the analytical gradient at all points
    expected = np.empty((sample.shape[0], 2), dtype=floating)
    expected[..., 0] = 2 * a * sample[:, 0] + b * sample[:, 1]
    expected[..., 1] = 2 * c * sample[:, 1] + b * sample[:, 0]
    # Get the numerical gradient with the implementation under test
    sp_to_grid = np.linalg.inv(T)
    img_spacing = np.ones(2)

    img_d = cupy.asarray(img)
    img_spacing_d = cupy.asarray(img_spacing)
    sp_to_grid_d = cupy.asarray(sp_to_grid)
    sample_d = cupy.asarray(sample)

    actual, inside = vfu.sparse_gradient(img, sp_to_grid, img_spacing, sample)
    actual_gpu, inside_gpu = sparse_gradient(img_d, sp_to_grid_d,
                                             img_spacing_d, sample_d.T)
    atol = rtol = 1e-5
    cupy.testing.assert_allclose(
        actual * inside[..., np.newaxis],
        actual_gpu * inside_gpu[..., np.newaxis],
        atol=atol,
        rtol=rtol,
    )
    cupy.testing.assert_array_equal(inside, inside_gpu)

    # TODO: verify exceptions
    # # Verify exception is raised when passing invalid affine or spacings
    # invalid_affine = np.eye(2)
    # invalid_spacings = np.ones(1)
    # assert_raises(ValueError, vfu.sparse_gradient, img, invalid_affine,
    #               img_spacing, sample)
    # assert_raises(ValueError, vfu.sparse_gradient, img, sp_to_grid,
    #               invalid_spacings, sample)

    # Test dense gradient
    # Compute the analytical gradient at all points
    expected = np.empty(sh + (2, ), dtype=floating)
    expected[..., 0] = 2 * a * TX[..., 0] + b * TX[..., 1]
    expected[..., 1] = 2 * c * TX[..., 1] + b * TX[..., 0]
    # Get the numerical gradient with the implementation under test
    sp_to_grid = np.linalg.inv(T)
    img_spacing = np.ones(2)

    actual, inside = vfu.gradient(img, sp_to_grid, img_spacing, sh, T)
    sp_to_grid_d = cupy.asarray(sp_to_grid)
    img_spacing_d = cupy.asarray(img_spacing)
    T_d = cupy.asarray(T)
    actual_gpu, inside_gpu = gradient(img_d, sp_to_grid_d, img_spacing_d, sh,
                                      T_d)

    atol = rtol = 1e-5
    cupy.testing.assert_allclose(
        actual * inside[..., np.newaxis],
        actual_gpu * inside_gpu[..., np.newaxis],
        atol=atol,
        rtol=rtol,
    )
    cupy.testing.assert_array_equal(inside, inside_gpu)
Пример #6
0
def test_mi_gradient_sparse():
    # Test the gradient of mutual information
    h = 1e-5
    for ttype in factors:
        transform = regtransforms[ttype]
        dim = ttype[1]
        if dim == 2:
            nslices = 1
            interp_method = vf.interpolate_scalar_2d
        else:
            nslices = 45
            interp_method = vf.interpolate_scalar_3d
        # Get data (pair of images related to each other by an known transform)
        factor = factors[ttype]
        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 5.0)
        smask = None
        mmask = None

        # Sample static domain
        k = 3
        sigma = 0.25
        seed = 1234
        shape = np.array(static.shape, dtype=np.int32)
        samples = sample_domain_regular(k, shape, static_g2w, sigma, seed)
        samples = np.array(samples)
        samples = np.hstack((samples, np.ones(samples.shape[0])[:, None]))
        sp_to_static = np.linalg.inv(static_g2w)
        samples_static_grid = (sp_to_static.dot(samples.T).T)[..., :dim]
        intensities_static, inside = interp_method(static.astype(np.float32),
                                                   samples_static_grid)
        intensities_static = np.array(intensities_static, dtype=np.float64)

        # Prepare a MattesBase instance
        # The computation of the metric is done in 3 steps:
        # 1.Compute the joint distribution
        # 2.Compute the gradient of the joint distribution
        # 3.Compute the metric's value and gradient using results from 1 and 2
        metric = MattesBase(32)
        metric.setup(static, moving, smask, mmask)

        # 1. Update the joint distribution
        sp_to_moving = np.linalg.inv(moving_g2w)
        samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
        intensities_moving, inside = interp_method(moving.astype(np.float32),
                                                   samples_moving_grid)
        intensities_moving = np.array(intensities_moving, dtype=np.float64)
        metric.update_pdfs_sparse(intensities_static, intensities_moving)

        # 2. Update the joint distribution gradient (the derivative of each
        # histogram cell w.r.t. the transform parameters). This requires
        # to evaluate the gradient of the moving image at the sampling points
        theta = transform.get_identity_parameters().copy()
        spacing = np.ones(dim, dtype=np.float64)
        shape = np.array(static.shape, dtype=np.int32)
        mgrad, inside = vf.sparse_gradient(moving.astype(np.float32),
                                           sp_to_moving, spacing,
                                           samples[..., :dim])
        metric.update_gradient_sparse(theta, transform, intensities_static,
                                      intensities_moving, samples[..., :dim],
                                      mgrad)

        # 3. Update the metric (in this case, the Mutual Information) and its
        # gradient, which is computed from the joint density and its gradient
        metric.update_mi_metric(update_gradient=True)

        # Now we can extract the value and gradient of the metric
        # This is the gradient according to the implementation under test
        val0 = metric.metric_val
        actual = np.copy(metric.metric_grad)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty_like(actual)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h

            M = transform.param_to_matrix(dtheta)
            shape = np.array(static.shape, dtype=np.int32)
            sp_to_moving = np.linalg.inv(moving_g2w).dot(M)
            samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
            intensities_moving, inside =\
                interp_method(moving.astype(np.float32), samples_moving_grid)
            intensities_moving = np.array(intensities_moving, dtype=np.float64)
            metric.update_pdfs_sparse(intensities_static, intensities_moving)
            metric.update_mi_metric(update_gradient=False)
            val1 = metric.metric_val
            expected[i] = (val1 - val0) / h

        dp = expected.dot(actual)
        enorm = np.linalg.norm(expected)
        anorm = np.linalg.norm(actual)
        nprod = dp / (enorm * anorm)
        assert (nprod > 0.9999)