Пример #1
0
def test_sym_hemisphere():
    assert_raises(ValueError, sym_hemisphere, VERTICES, 'k')
    assert_raises(ValueError, sym_hemisphere, VERTICES, '%z')
    for hem in ('x', 'y', 'z', '-x', '-y', '-z'):
        vert_inds = sym_hemisphere(VERTICES, hem)
        assert_equal(vert_inds.shape, (3, ))
        verts = VERTICES[vert_inds]
        # there are no symmetrical points remanining in vertices
        for vert in verts:
            assert_false(np.any(np.all(vert * -1 == verts)))
    # Test the sphere mesh data
    vertices, _ = SPHERE_DATA
    n_vertices = vertices.shape[0]
    vert_inds = sym_hemisphere(vertices)
    assert_array_equal(vert_inds, np.arange(n_vertices / 2))
Пример #2
0
def test_neighbor_max():
    # test ability to find maxima on sphere using neighbors
    vert_inds = sym_hemisphere(VERTICES)
    adj_inds = vertinds_to_neighbors(vert_inds, FACES)
    # test slow and fast routine
    for func in (argmax_from_adj, dcr.argmax_from_adj):
        # all equal, no maxima
        vert_vals = np.zeros((N_VERTICES,))
        inds = func(vert_vals,
                    vert_inds,
                    adj_inds)
        assert_equal(inds.size, 0)
        # just ome max
        for max_pos in range(3):
            vert_vals = np.zeros((N_VERTICES,))
            vert_vals[max_pos] = 1
            inds = func(vert_vals,
                        vert_inds,
                        adj_inds)
            assert_array_equal(inds, [max_pos])
        # maxima outside hemisphere don't appear
        for max_pos in range(3,6):
            vert_vals = np.zeros((N_VERTICES,))
            vert_vals[max_pos] = 1
            inds = func(vert_vals,
                        vert_inds,
                        adj_inds)
            assert_equal(inds.size, 0)
        # use whole mesh, with two maxima
        w_vert_inds = np.arange(6)
        w_adj_inds = vertinds_to_neighbors(w_vert_inds, FACES)
        vert_vals = np.array([1.0, 0, 0, 0, 0, 2])
        inds = func(vert_vals, w_vert_inds, w_adj_inds)
        assert_array_equal(inds, [0, 5])
Пример #3
0
def test_neighbor_max():
    # test ability to find maxima on sphere using neighbors
    vert_inds = sym_hemisphere(VERTICES)
    adj_inds = vertinds_to_neighbors(vert_inds, FACES)
    # test slow and fast routine
    for func in (argmax_from_adj, dcr.argmax_from_adj):
        # all equal, no maxima
        vert_vals = np.zeros((N_VERTICES, ))
        inds = func(vert_vals, vert_inds, adj_inds)
        assert_equal(inds.size, 0)
        # just ome max
        for max_pos in range(3):
            vert_vals = np.zeros((N_VERTICES, ))
            vert_vals[max_pos] = 1
            inds = func(vert_vals, vert_inds, adj_inds)
            assert_array_equal(inds, [max_pos])
        # maxima outside hemisphere don't appear
        for max_pos in range(3, 6):
            vert_vals = np.zeros((N_VERTICES, ))
            vert_vals[max_pos] = 1
            inds = func(vert_vals, vert_inds, adj_inds)
            assert_equal(inds.size, 0)
        # use whole mesh, with two maxima
        w_vert_inds = np.arange(6)
        w_adj_inds = vertinds_to_neighbors(w_vert_inds, FACES)
        vert_vals = np.array([1.0, 0, 0, 0, 0, 2])
        inds = func(vert_vals, w_vert_inds, w_adj_inds)
        assert_array_equal(inds, [0, 5])
Пример #4
0
def test_sym_hemisphere():
    assert_raises(ValueError, sym_hemisphere,
                        VERTICES, 'k')
    assert_raises(ValueError, sym_hemisphere,
                        VERTICES, '%z')
    for hem in ('x', 'y', 'z', '-x', '-y', '-z'):
        vert_inds = sym_hemisphere(VERTICES, hem)
        assert_equal(vert_inds.shape, (3,))
        verts = VERTICES[vert_inds]
        # there are no symmetrical points remanining in vertices
        for vert in verts:
            assert_false(np.any(np.all(
                    vert * -1 == verts)))
    # Test the sphere mesh data
    vertices, _ = SPHERE_DATA
    n_vertices = vertices.shape[0]
    vert_inds = sym_hemisphere(vertices)
    assert_array_equal(vert_inds,
                       np.arange(n_vertices / 2))
Пример #5
0
def test_performance():
    # test this implementation against Frank Yeh implementation
    vertices, faces = SPHERE_DATA
    n_vertices = vertices.shape[0]
    vert_inds = sym_hemisphere(vertices)
    adj = vertinds_to_neighbors(vert_inds, faces)
    np.random.seed(42)
    vert_vals = np.random.uniform(size=(n_vertices,))
    maxinds = argmax_from_adj(vert_vals, vert_inds, adj)
    maxes, pfmaxinds = dcr.peak_finding(vert_vals, faces)
    assert_array_equal(maxinds, pfmaxinds[::-1])
Пример #6
0
def test_performance():
    # test this implementation against Frank Yeh implementation
    vertices, faces = SPHERE_DATA
    n_vertices = vertices.shape[0]
    vert_inds = sym_hemisphere(vertices)
    adj = vertinds_to_neighbors(vert_inds, faces)
    np.random.seed(42)
    vert_vals = np.random.uniform(size=(n_vertices, ))
    maxinds = argmax_from_adj(vert_vals, vert_inds, adj)
    maxes, pfmaxinds = dcr.peak_finding(vert_vals, faces)
    assert_array_equal(maxinds, pfmaxinds[::-1])