Пример #1
0
def compare_dni_dsi_gqi_gqi2_eit():

    #stop
    
    btable=np.loadtxt(get_data('dsi515btable'))
    bvals=btable[:,0]
    bvecs=btable[:,1:]
    
    type=3
    axesn=200
    SNR=20
    
    data,gold,angs,anglesn,axesn,angles=generate_gold_data(bvals,bvecs,fibno=type,axesn=axesn,SNR=SNR)
    
    gq=GeneralizedQSampling(data,bvals,bvecs,1.2,odf_sphere='symmetric642',squared=False,save_odfs=True)    
    gq2=GeneralizedQSampling(data,bvals,bvecs,3.,odf_sphere='symmetric642',squared=True,save_odfs=True)
    
    ds=DiffusionSpectrum(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True)
    ds.filter_width=32.    
    ds.update()
    ds.fit()
    
    ei=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)    
    ei.radius=np.arange(0,5,0.1)
    ei.gaussian_weight=None#0.01
    ei.set_operator('laplacian')
    ei.update()
    ei.fit()
    
    ei2=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)    
    ei2.radius=np.arange(0,5,0.1)
    ei2.gaussian_weight=None
    ei2.set_operator('laplap')
    ei2.update()
    ei2.fit()
    
    ei3=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)    
    ei3.radius=np.arange(0,5,0.1)
    ei3.gaussian_weight=None
    ei3.set_operator('signal')
    ei3.update()
    ei3.fit()    
    
    """
    blobs=np.zeros((2,4,642))
    
    no=200
    blobs[0,0,:]=gq.ODF[no]
    blobs[0,1,:]=gq2.ODF[no]
    blobs[0,2,:]=ds.ODF[no]
    blobs[0,3,:]=ei.ODF[no]
    no=399
    blobs[1,0,:]=gq.ODF[no]
    blobs[1,1,:]=gq2.ODF[no]
    blobs[1,2,:]=ds.ODF[no]
    blobs[1,3,:]=ei.ODF[no]       
    show_blobs(blobs[None,:,:,:],ei.odf_vertices,ei.odf_faces,1.2)
    """
    #stop
    
    vts=gq.odf_vertices
    
    def simple_peaks(ODF,faces,thr):
        x,g=ODF.shape
        PK=np.zeros((x,5))
        IN=np.zeros((x,5))
        for (i,odf) in enumerate(ODF):
            peaks,inds=peak_finding(odf,faces)
            ibigp=np.where(peaks>thr*peaks[0])[0]
            l=len(ibigp)
            if l>3:
                l=3
            PK[i,:l]=peaks[:l]
            IN[i,:l]=inds[:l]
        return PK,IN
    
    
    thresh=0.5
    
    PK,IN=simple_peaks(ds.ODF,ds.odf_faces,thresh)
    res,me,st =do_compare(gold,vts,PK,IN,0,anglesn,axesn,type)
    
    PK,IN=simple_peaks(gq.ODF,ds.odf_faces,thresh)
    res2,me2,st2 =do_compare(gold,vts,PK,IN,0,anglesn,axesn,type)
    
    PK,IN=simple_peaks(gq2.ODF,ds.odf_faces,thresh)
    res3,me3,st3 =do_compare(gold,vts,PK,IN,0,anglesn,axesn,type)
    
    PK,IN=simple_peaks(ei.ODF,ds.odf_faces,thresh)
    res4,me4,st4 =do_compare(gold,vts,PK,IN,0,anglesn,axesn,type)
        
    PK,IN=simple_peaks(ei2.ODF,ds.odf_faces,thresh)
    res5,me5,st5 =do_compare(gold,vts,PK,IN,0,anglesn,axesn,type)
      
    PK,IN=simple_peaks(ei3.ODF,ei3.odf_faces,thresh)
    res6,me6,st6 =do_compare(gold,vts,PK,IN,0,anglesn,axesn,type)
    
    #res7,me7,st7 =do_compare(ei2.PK,ei2.IN,0,anglesn,axesn,type)
    
    if type==1:    
        plt.figure(1)       
        plt.plot(res,'r',label='DSI')
        plt.plot(res2,'g',label='GQI')
        plt.plot(res3,'b',label='GQI2')
        plt.plot(res4,'k',label='EITL')
        plt.plot(res5,'k--',label='EITL2')
        plt.plot(res6,'k-.',label='EITS')
        #plt.xlabel('angle')
        #plt.ylabel('resolution')
        #plt.title('Angular accuracy')
        plt.legend()
        plt.show()   
    else:
        
        if type==3:
            x,y,z=sphere2cart(np.ones(len(angles)),np.deg2rad(angles),np.zeros(len(angles)))
            x2,y2,z2=sphere2cart(np.ones(len(angles)),np.deg2rad(angles),np.deg2rad(120*np.ones(len(angles))))
            angles2=[]        
            for i in range(len(x)):
                angles2.append(np.rad2deg(np.arccos(np.dot([x[i],y[i],z[i]],[x2[i],y2[i],z2[i]]))))
            angles=angles2    
            
        plt.figure(1)
        plt.plot(angles,me,'r',linewidth=3.,label='DSI')
        plt.plot(angles,me2,'g',linewidth=3.,label='GQI')
        plt.plot(angles,me3,'b',linewidth=3.,label='GQI2')
        plt.plot(angles,me4,'k',linewidth=3.,label='EITL')
        plt.plot(angles,me5,'k--',linewidth=3.,label='EITL2')
        plt.plot(angles,me6,'k-.',linewidth=3.,label='EITS')
        #plt.plot(angles,me7,'r--',linewidth=3.,label='EITL2')
        plt.xlabel('angle')
        plt.ylabel('similarity')
        
        title='Angular similarity of ' + str(type) + '-fibres crossing with SNR ' + str(SNR)
        plt.title(title)
        plt.legend(loc='center right')
        plt.savefig('/tmp/test.png',dpi=300)
        plt.show()
                      save_odfs=True,fast=True)
    
    dn.peak_thr=.4
    dn.iso_thr=.05
    dn.radius=np.arange(0,6,0.2)
    #dn.radius=np.arange(1.,6,0.2)
    #dn.radius=np.arange(0,1.,0.2)
    dn.radiusn=len(dn.radius)
    dn.origin=8#16
    dn.precompute_fast_coords()    
    dn.precompute_equator_indices(5.)
    dn.precompute_angular(0.1)    
    dn.fit()
    """
    
    ei=EquatorialInversion(dat,bvals,bvecs,odf_sphere='symmetric642',
            half_sphere_grads=True,auto=False,save_odfs=True,fast=True)
    ei.radius=np.arange(0,5,0.1)
    ei.gaussian_weight=0.05
    ei.set_operator('laplacian')
    ei.update()
    ei.fit()    

    ds=DiffusionSpectrum(dat,bvals,bvecs,
                         odf_sphere='symmetric642',
                         mask=None,
                         half_sphere_grads=True,
                         auto=True,
                         save_odfs=True)
    
    ten=Tensor(dat,bvals,bvecs)
    FA=ten.fa()
Пример #3
0
def show_simulated_2fiber_crossings():

    btable=np.loadtxt(get_data('dsi515btable'))
    bvals=btable[:,0]
    bvecs=btable[:,1:]
    
    data=create_data_2fibers(bvals,bvecs,d=0.0015,S0=100,angles=np.arange(0,47,5),snr=None)
    #data=create_data_2fibers(bvals,bvecs,d=0.0015,S0=100,angles=np.arange(0,92,5),snr=None)
    
    print data.shape
    #stop
    
    
    #"""
    dn=DiffusionNabla(data,bvals,bvecs,odf_sphere='symmetric642',
                      auto=False,save_odfs=True,fast=True)    
    dn.peak_thr=.4
    dn.iso_thr=.05
    dn.radius=np.arange(0,5,0.1)
    dn.radiusn=len(dn.radius)    
    dn.create_qspace(bvals,bvecs,16,8)
    dn.radon_params(64)
    dn.precompute_interp_coords()
    dn.precompute_fast_coords()
    dn.precompute_equator_indices(5.)
    dn.precompute_angular(None)#0.01)
    dn.fit()
    
    dn2=DiffusionNabla(data,bvals,bvecs,odf_sphere='symmetric642',
                      auto=False,save_odfs=True,fast=False)    
    dn2.peak_thr=.4
    dn2.iso_thr=.05
    dn2.radius=np.arange(0,5,0.1)
    dn2.radiusn=len(dn.radius)    
    dn2.create_qspace(bvals,bvecs,16,8)
    dn2.radon_params(64)
    dn2.precompute_interp_coords()
    dn2.precompute_fast_coords()
    dn2.precompute_equator_indices(5.)
    dn2.precompute_angular(None)#0.01)
    dn2.fit()
    #"""
    
        
    eis=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',
                      auto=False,save_odfs=True,fast=True)    
    #eis.radius=np.arange(0,6,0.2)
    eis.radius=np.arange(0,5,0.1)    
    eis.gaussian_weight=None
    eis.set_operator('signal')#'laplap')
    eis.update()
    eis.fit()
    
    eil=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',
                      auto=False,save_odfs=True,fast=True)
    #eil.radius=np.arange(0,6,0.2)
    eil.radius=np.arange(0,5,0.1)    
    eil.gaussian_weight=None
    eil.set_operator('laplacian')#'laplap')
    eil.update()
    eil.fit()
    
    eil2=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',
                      auto=False,save_odfs=True,fast=True)    
    #eil2.radius=np.arange(0,6,0.2)
    eil2.radius=np.arange(0,5,0.1)
    eil2.gaussian_weight=None
    eil2.set_operator('laplap')
    eil2.update()
    eil2.fit()
        
    ds=DiffusionSpectrum(data,bvals,bvecs,odf_sphere='symmetric642',auto=True,save_odfs=True)

    gq=GeneralizedQSampling(data,bvals,bvecs,1.2,odf_sphere='symmetric642',squared=False,auto=False,save_odfs=True)
    gq.fit()
    
    gq2=GeneralizedQSampling(data,bvals,bvecs,3.,odf_sphere='symmetric642',squared=True,auto=False,save_odfs=True)
    gq2.fit()    

    #blobs=np.zeros((19,1,8,dn.odfn))
    blobs=np.zeros((10,1,6,dn.odfn))
    """
    blobs[:,0,0]=dn.odfs()
    blobs[:,0,1]=dn2.odfs()
    blobs[:,0,2]=eis.odfs()
    blobs[:,0,3]=eil.odfs()    
    blobs[:,0,4]=eil2.odfs()         
    blobs[:,0,5]=ds.odfs()
    blobs[:,0,6]=gq.odfs()
    blobs[:,0,7]=gq2.odfs()
    """
    blobs[:,0,0]=dn2.odfs()
    blobs[:,0,1]=eil.odfs()
    eo=eil2.odfs()
    #eo[eo<0.05*eo.max()]=0
    blobs[:,0,2]=eo         
    blobs[:,0,3]=ds.odfs()
    blobs[:,0,4]=gq.odfs()
    blobs[:,0,5]=gq2.odfs()
        
    show_blobs(blobs,dn.odf_vertices,dn.odf_faces,scale=0.5)
Пример #4
0
def show_gaussian_smoothing_effects():

    SNR=20
    type='laplacian'
    
    print 'Loading data'        
    btable=np.loadtxt(get_data('dsi515btable'))
    bvals=btable[:,0]
    bvecs=btable[:,1:]
    S,stics=SticksAndBall(bvals, bvecs, d=0.0015, S0=100, 
                          angles=[(0, 0),(90.,0),(90.,90.)], 
                          fractions=[33,33,33], snr=SNR)
    data=S[None,:]
        
    ei=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)
    ei.radius=np.arange(0,5,0.1)
    ei.gaussian_weight=None
    ei.set_operator(type)
    ei.update()
    ei.fit()    
    
    ei2=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)
    ei2.radius=np.arange(0,5,0.1)
    ei2.gaussian_weight=0.01
    ei2.set_operator(type)
    ei2.update()
    ei2.fit()

    ei3=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)
    ei3.radius=np.arange(0,5,0.1)
    ei3.gaussian_weight=0.05
    ei3.set_operator(type)
    ei3.update()
    ei3.fit()
    
    ei4=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)
    ei4.radius=np.arange(0,5,0.1)
    ei4.gaussian_weight=0.1
    ei4.set_operator(type)
    ei4.update()
    ei4.fit()
        
    blobs=np.zeros((4,len(ei.odf_vertices)))
    blobs[0]=ei.ODF.ravel()
    blobs[1]=ei2.ODF.ravel()
    blobs[2]=ei3.ODF.ravel()
    blobs[3]=ei4.ODF.ravel()
    
    show_blobs(blobs[None,None,:,:],ei.odf_vertices,ei.odf_faces,size=1.5,scale=1.)
Пример #5
0
def show_phantom_crossing(fname,type='dsi',weight=None):

    btable=np.loadtxt(get_data('dsi515btable'))
    bvals=btable[:,0]
    bvecs=btable[:,1:]

    #fname='/home/eg309/Desktop/t5'
    #fname='/home/eg309/Data/orbital_phantoms/20.0'
    #fname='/tmp/t5'
    fvol = np.memmap(fname, dtype='f8', mode='r', shape=(64,64,64,len(bvals)))
    data=fvol[32-10:32+10,32-10:32+10,31:34,:]
    #data=fvol[32,32,32,:][None,None,None,:]
    ten=Tensor(data,bvals,bvecs,thresh=50)
    FA=ten.fa()
       
    def H(x):
        res=(2*x*np.cos(x) + (x**2-2)*np.sin(x))/x**3
        res[np.isnan(res)]=1/3.
        return res
    
    if type=='dsi':
        mod=DiffusionSpectrum(data,bvals,bvecs,odf_sphere='symmetric642',auto=True,save_odfs=True)        
    if type=='gqi':
        mod=GeneralizedQSampling(data,bvals,bvecs,1.2,odf_sphere='symmetric642',squared=False,save_odfs=True)
    if type=='gqi2':
        mod=GeneralizedQSampling(data,bvals,bvecs,3.,odf_sphere='symmetric642',squared=True,save_odfs=True)
    if type=='eitl':
        ei=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)
        ei.radius=np.arange(0,5,0.1)
        ei.gaussian_weight=weight
        ei.set_operator('laplacian')
        ei.update()
        ei.fit()
        mod=ei
    if type=='eitl2':
        ei=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)
        ei.radius=np.arange(0,5,0.1)
        ei.gaussian_weight=weight
        ei.set_operator('laplap')
        ei.update()
        ei.fit()
        mod=ei
    if type=='eits':
        ei=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',auto=False,save_odfs=True,fast=True)
        ei.radius=np.arange(0,5,0.1)
        ei.gaussian_weight=weight
        ei.set_operator('signal')
        ei.update()
        ei.fit()
        mod=ei   
        
    show_blobs(mod.ODF[:,:,0,:][:,:,None,:],mod.odf_vertices,mod.odf_faces,fa_slice=FA[:,:,0],size=1.5,scale=1.)    
Пример #6
0
def compare_sdni_eitl():
    
    btable=np.loadtxt(get_data('dsi515btable'))
    bvals=btable[:,0]
    bvecs=btable[:,1:]   
    
    type=3
    axesn=200
    SNR=20
    
    data,gold,angs,anglesn,axesn,angles=generate_gold_data(bvals,bvecs,fibno=type,axesn=axesn,SNR=SNR)
    
    ei=EquatorialInversion(data,bvals,bvecs,odf_sphere='symmetric642',
                           auto=False,save_odfs=True,fast=True)    
    ei.radius=np.arange(0,5,0.1)
    ei.gaussian_weight=None
    ei.set_operator('laplacian')
    #{'reflect','constant','nearest','mirror', 'wrap'}
    ei.set_mode(order=1,zoom=1,mode='constant')    
    ei.update()
    ei.fit()

    dn=DiffusionNabla(data,bvals,bvecs,odf_sphere='symmetric642',
                      auto=False,save_odfs=True,fast=False)    
    dn.radius=np.arange(0,5,0.1)
    dn.gaussian_weight=None
    dn.update()
    dn.fit()
    
    vts=ei.odf_vertices
    
    def simple_peaks(ODF,faces,thr):
        x,g=ODF.shape
        PK=np.zeros((x,5))
        IN=np.zeros((x,5))
        for (i,odf) in enumerate(ODF):
            peaks,inds=peak_finding(odf,faces)
            ibigp=np.where(peaks>thr*peaks[0])[0]
            l=len(ibigp)
            if l>3:
                l=3
            PK[i,:l]=peaks[:l]
            IN[i,:l]=inds[:l]
        return PK,IN
    
    print "test0"
    thresh=0.5
    PK,IN=simple_peaks(ei.ODF,ei.odf_faces,thresh)
    res,me,st =do_compare(gold,vts,PK,IN,0,anglesn,axesn,type)
    #PKG,ING=simple_peaks(eig.ODF,ei.odf_faces,thresh)
    #resg,meg,stg =do_compare(gold,vts,PKG,ING,0,anglesn,axesn,type)
    PK,IN=simple_peaks(dn.ODF,dn.odf_faces,thresh)
    res2,me2,st2 =do_compare(gold,vts,PK,IN,0,anglesn,axesn,type)
    if type==3:
            x,y,z=sphere2cart(np.ones(len(angles)),np.deg2rad(angles),np.zeros(len(angles)))
            x2,y2,z2=sphere2cart(np.ones(len(angles)),np.deg2rad(angles),np.deg2rad(120*np.ones(len(angles))))
            angles2=[]
            for i in range(len(x)):
                angles2.append(np.rad2deg(np.arccos(np.dot([x[i],y[i],z[i]],[x2[i],y2[i],z2[i]]))))
            angles=angles2
    print "test1"
    plt.figure(1)
    plt.plot(angles,me,'k:',linewidth=3.,label='EITL')
    plt.plot(angles,me2,'k--',linewidth=3.,label='sDNI')
    #plt.plot(angles,me7,'r--',linewidth=3.,label='EITL2')
    plt.xlabel('angle')
    plt.ylabel('similarity')
    title='Angular similarity of ' + str(type) + '-fibres crossing with SNR ' + str(SNR)
    plt.title(title)
    plt.legend(loc='center right')
    plt.savefig('/tmp/test.png',dpi=300)
    plt.show()
Пример #7
0
def humans():   

    no_seeds=10**6
    visualize = False
    save_odfs = False
    dirname = "data/"    
    for root, dirs, files in os.walk(dirname):
        if root.endswith('101_32'):
            
            base_dir = root+'/'
            filename = 'raw'
            base_filename = base_dir + filename
            nii_filename = base_filename + 'bet.nii.gz'
            bvec_filename = base_filename + '.bvec'
            bval_filename = base_filename + '.bval'
            flirt_mat = base_dir + 'DTI/flirt.mat'    
            fa_filename = base_dir + 'DTI/fa.nii.gz'
            fsl_ref = '/usr/share/fsl/data/standard/FMRIB58_FA_1mm.nii.gz'
            dpy_filename = base_dir + 'DTI/res_tracks_dti.dpy'
    
            print bvec_filename
            
            img = nib.load(nii_filename)
            data = img.get_data()

            affine = img.get_affine()
            bvals = np.loadtxt(bval_filename)
            gradients = np.loadtxt(bvec_filename).T # this is the unitary direction of the gradient
            
            tensors = Tensor(data, bvals, gradients, thresh=50)
            FA = tensors.fa()                       
            FA = tensors.fa()
            famask=FA>=.2
            
            ds=DiffusionSpectrum(data,bvals,gradients,odf_sphere='symmetric642',mask=famask,half_sphere_grads=True,auto=True,save_odfs=save_odfs)
            gq=GeneralizedQSampling(data,bvals,gradients,1.2,odf_sphere='symmetric642',mask=famask,squared=False,save_odfs=save_odfs)
            ei=EquatorialInversion(data,bvals,gradients,odf_sphere='symmetric642',mask=famask,half_sphere_grads=True,auto=False,save_odfs=save_odfs,fast=True)
            ei.radius=np.arange(0,5,0.4)
            ei.gaussian_weight=0.05
            ei.set_operator('laplacian')
            ei.update()
            ei.fit()    
            
            ds.PK[FA<.2]=np.zeros(5) 
            ei.PK[FA<.2]=np.zeros(5)
            gq.PK[FA<.2]=np.zeros(5)                   
                        
            print 'create seeds'
            x,y,z,g=ei.PK.shape
            seeds=np.zeros((no_seeds,3))
            sid=0
            while sid<no_seeds:
                rx=(x-1)*np.random.rand()
                ry=(y-1)*np.random.rand()
                rz=(z-1)*np.random.rand()
                seed=np.ascontiguousarray(np.array([rx,ry,rz]),dtype=np.float64)        
                seeds[sid]=seed
                sid+=1
            
            euler = EuDX(a=FA, ind=tensors.ind(), seeds=seeds, a_low=.2)
            dt_tracks = [track for track in euler]                                    
            euler2 = EuDX(a=ds.PK, ind=ds.IN, seeds=seeds, odf_vertices=ds.odf_vertices, a_low=.2)
            ds_tracks = [track for track in euler2]    
            euler3 = EuDX(a=gq.PK, ind=gq.IN, seeds=seeds, odf_vertices=gq.odf_vertices, a_low=.2)
            gq_tracks = [track for track in euler3]
            euler4 = EuDX(a=ei.PK, ind=ei.IN, seeds=seeds, odf_vertices=ei.odf_vertices, a_low=.2)
            ei_tracks = [track for track in euler4]
            
            if visualize:
                renderer = fvtk.ren()
                fvtk.add(renderer, fvtk.line(tensor_tracks, fvtk.red, opacity=1.0))
                fvtk.show(renderer)
            
            print 'Load images to be used for registration'
            img_fa =nib.load(fa_filename)
            img_ref =nib.load(fsl_ref)
            mat=flirt2aff(np.loadtxt(flirt_mat),img_fa,img_ref)
            del img_fa
            del img_ref
            
            print 'transform the tracks'
            dt_linear = transform_tracks(dt_tracks,mat)
            ds_linear = transform_tracks(ds_tracks,mat)
            gq_linear = transform_tracks(gq_tracks,mat)
            ei_linear = transform_tracks(ei_tracks,mat)
                        
            print 'save tensor tracks'
            dpy_filename = base_dir + 'DTI/dt_linear.dpy'
            print dpy_filename
            dpr_linear = Dpy(dpy_filename, 'w')
            dpr_linear.write_tracks(dt_linear)
            dpr_linear.close()
            
            print 'save ei tracks'
            dpy_filename = base_dir + 'DTI/ei_linear.dpy'
            print dpy_filename
            dpr_linear = Dpy(dpy_filename, 'w')
            dpr_linear.write_tracks(ei_linear)
            dpr_linear.close()
            
            print 'save ds tracks'
            dpy_filename = base_dir + 'DTI/ds_linear.dpy'
            print dpy_filename
            dpr_linear = Dpy(dpy_filename, 'w')
            dpr_linear.write_tracks(ds_linear)
            dpr_linear.close()
            
            print 'save gq tracks'
            dpy_filename = base_dir + 'DTI/gq_linear.dpy'
            print dpy_filename
            dpr_linear = Dpy(dpy_filename, 'w')
            dpr_linear.write_tracks(gq_linear)
            dpr_linear.close()
            
            print 'save lengths'
            pkl_filename = base_dir + 'DTI/dt_lengths.pkl'
            save_pickle(pkl_filename,lengths(dt_linear))            
            pkl_filename = base_dir + 'DTI/ei_lengths.pkl'
            save_pickle(pkl_filename,lengths(ei_linear))
            pkl_filename = base_dir + 'DTI/gq_lengths.pkl'
            save_pickle(pkl_filename,lengths(gq_linear))
            pkl_filename = base_dir + 'DTI/ds_lengths.pkl'
            save_pickle(pkl_filename,lengths(ds_linear))