Пример #1
0
def test_sticks_and_ball():
    d = 0.0015
    S, sticks = sticks_and_ball(gtab, d=d, S0=1, angles=[(0, 0), ],
                                fractions=[100], snr=None)
    assert_array_equal(sticks, [[0, 0, 1]])
    S_st = SingleTensor(gtab, 1, evals=[d, 0, 0], evecs=[[0, 0, 0],
                                                         [0, 0, 0],
                                                         [1, 0, 0]])
    assert_array_almost_equal(S, S_st)
Пример #2
0
def test_single_tensor():
    evals = np.array([1.4, .35, .35]) * 10**(-3)
    evecs = np.eye(3)
    S = SingleTensor(gtab, 100, evals, evecs, snr=None)
    assert_array_almost_equal(S[gtab.b0s_mask], 100)
    assert_(np.mean(S[~gtab.b0s_mask]) < 100)

    from dipy.reconst.dti import TensorModel
    m = TensorModel(gtab)
    t = m.fit(S)

    assert_array_almost_equal(t.fa, 0.707, decimal=3)
Пример #3
0
def test_single_tensor():

    fimg, fbvals, fbvecs = get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    #bvals=np.loadtxt(fbvals)
    #bvecs=np.loadtxt(fbvecs).T
    img = nib.load(fimg)
    data = img.get_data()

    evals = np.array([1.4, .35, .35]) * 10**(-3)
    evecs = np.eye(3)
    S = SingleTensor(bvals, bvecs, 100, evals, evecs, snr=None)
    """
Пример #4
0
def orbital_phantom(gtab=None,
                    evals=diffusion_evals,
                    func=None,
                    t=np.linspace(0, 2 * np.pi, 1000),
                    datashape=(64, 64, 64, 65),
                    origin=(32, 32, 32),
                    scale=(25, 25, 25),
                    angles=np.linspace(0, 2 * np.pi, 32),
                    radii=np.linspace(0.2, 2, 6),
                    S0=100.,
                    snr=None):
    """Create a phantom based on a 3-D orbit ``f(t) -> (x,y,z)``.

    Parameters
    -----------
    gtab : GradientTable
        Gradient table of measurement directions.
    evals : array, shape (3,)
        Tensor eigenvalues.
    func : user defined function f(t)->(x,y,z)
        It could be desirable for ``-1=<x,y,z <=1``.
        If None creates a circular orbit.
    t : array, shape (K,)
        Represents time for the orbit. Default is
        ``np.linspace(0, 2 * np.pi, 1000)``.
    datashape : array, shape (X,Y,Z,W)
        Size of the output simulated data
    origin : tuple, shape (3,)
        Define the center for the volume
    scale : tuple, shape (3,)
        Scale the function before applying to the grid
    angles : array, shape (L,)
        Density angle points, always perpendicular to the first eigen vector
        Default np.linspace(0, 2 * np.pi, 32).
    radii : array, shape (M,)
        Thickness radii.  Default ``np.linspace(0.2, 2, 6)``.
        angles and radii define the total thickness options
    S0 : double, optional
        Maximum simulated signal. Default 100.
    snr : float, optional
        The signal to noise ratio set to apply Rician noise to the data.
        Default is to not add noise at all.

    Returns
    -------
    data : array, shape (datashape)

    See Also
    --------
    add_noise

    Examples
    ---------

    >>> def f(t):
    ...    x = np.sin(t)
    ...    y = np.cos(t)
    ...    z = np.linspace(-1, 1, len(x))
    ...    return x, y, z

    >>> data = orbital_phantom(func=f)

    """

    if gtab is None:
        fimg, fbvals, fbvecs = get_data('small_64D')
        gtab = gradient_table(fbvals, fbvecs)

    if func is None:
        x = np.sin(t)
        y = np.cos(t)
        z = np.zeros(t.shape)
    else:
        x, y, z = func(t)

    dx = np.diff(x)
    dy = np.diff(y)
    dz = np.diff(z)

    x = scale[0] * x + origin[0]
    y = scale[1] * y + origin[1]
    z = scale[2] * z + origin[2]

    bx = np.zeros(len(angles))
    by = np.sin(angles)
    bz = np.cos(angles)

    # The entire volume is considered to be inside the brain.
    # Voxels without a fiber crossing through them are taken
    # to be isotropic with signal = S0.
    vol = np.zeros(datashape) + S0

    for i in range(len(dx)):
        evecs, R = diff2eigenvectors(dx[i], dy[i], dz[i])
        S = SingleTensor(gtab, S0, evals, evecs, snr=None)

        vol[int(x[i]), int(y[i]), int(z[i]), :] += S

        for r in radii:
            for j in range(len(angles)):
                rb = np.dot(R, np.array([bx[j], by[j], bz[j]]))

                ix = int(x[i] + r * rb[0])
                iy = int(y[i] + r * rb[1])
                iz = int(z[i] + r * rb[2])
                vol[ix, iy, iz] = vol[ix, iy, iz] + S

    vol = vol / np.max(vol, axis=-1)[..., np.newaxis]
    vol *= S0

    if snr is not None:
        vol = add_noise(vol, snr, S0=S0, noise_type='rician')

    return vol
Пример #5
0
def orbital_phantom(bvals=None,
                    bvecs=None,
                    evals=np.array([1.4, .35, .35]) * 10**(-3),
                    func=None,
                    t=np.linspace(0, 2 * np.pi, 1000),
                    datashape=(64, 64, 64, 65),
                    origin=(32, 32, 32),
                    scale=(25, 25, 25),
                    angles=np.linspace(0, 2 * np.pi, 32),
                    radii=np.linspace(0.2, 2, 6),
                    S0=100.):
    """ Create a phantom based on a 3d orbit f(t)->(x,y,z)
    
    Parameters
    -----------
    bvals : array, shape (N,)
    bvecs : array, shape (N,3)
    evals : array, shape (3,)
        tensor eigenvalues
    func : user defined function f(t)->(x,y,z) 
        It could be desirable for -1=<x,y,z <=1 
        if None creates a circular orbit
    t : array, shape (K,)
        represents time for the orbit
        Default is np.linspace(0,2*np.pi,1000)
    datashape : array, shape (X,Y,Z,W)
        size of the output simulated data
    origin : tuple, shape (3,)
        define the center for the volume
    scale : tuple, shape (3,)
        scale the function before applying to the grid
    angles : array, shape (L,)
        density angle points, always perpendicular to the first eigen vector
        Default np.linspace(0,2*np.pi,32),
    radii : array, shape (M,)
        thickness radii    
        Default np.linspace(0.2,2,6)
        angles and radii define the total thickness options 
    S0 : double, simulated signal without diffusion gradients applied
        Default 100.
    snr : signal to noise ratio
        Used for applying rician noise to the data.
        Default 200. Common is 20. 
    background_noise : boolean, Default False
    
    Returns
    ---------
    data : array, shape (datashape)
    
    Notes 
    --------
    Crossings can be created by adding multiple orbitual_phantom outputs.
    
    Examples
    ---------
    
    def f(t):
        x=np.sin(t)
        y=np.cos(t)        
        z=np.linspace(-1,1,len(x))
        return x,y,z
    
    data=orbitual_phantom(func=f)
        
    """

    if bvals == None:
        fimg, fbvals, fbvecs = get_data('small_64D')
        bvals = np.load(fbvals)
        bvecs = np.load(fbvecs)
        bvecs[np.isnan(bvecs)] = 0

    if func == None:
        x = np.sin(t)
        y = np.cos(t)
        z = np.zeros(t.shape)
    else:
        x, y, z = func(t)

    #stop

    dx = np.diff(x)
    dy = np.diff(y)
    dz = np.diff(z)

    x = scale[0] * x + origin[0]
    y = scale[1] * y + origin[1]
    z = scale[2] * z + origin[2]

    bx = np.zeros(len(angles))
    by = np.sin(angles)
    bz = np.cos(angles)

    vol = np.zeros(datashape)

    for i in range(len(dx)):
        evecs, R = diff2eigenvectors(dx[i], dy[i], dz[i])
        S = SingleTensor(bvals, bvecs, S0, evals, evecs, snr=None)
        #print sigma, S0/snr, S0, snr
        vol[x[i], y[i], z[i], :] += S
        for r in radii:
            for j in range(len(angles)):
                rb = np.dot(R, np.array([bx[j], by[j], bz[j]]))
                vol[x[i] + r * rb[0], y[i] + r * rb[1], z[i] + r * rb[2]] += S

    #ten=Tensor(vol,bvals,bvecs)
    #FA=ten.fa()
    #FA[np.isnan(FA)]=0
    #vol[np.isnan(vol)]=0
    return vol