def __init__(self, name, polyData, view): om.ObjectModelItem.__init__(self, name, om.Icons.Robot) self.views = [] self.polyData = polyData self.mapper = vtk.vtkPolyDataMapper() self.mapper.SetInput(self.polyData) self.actor = vtk.vtkActor() self.actor.SetMapper(self.mapper) self.shadowActor = None self.scalarBarWidget = None self.extraViewRenderers = {} self.rangeMap = dict(PolyDataItem.defaultScalarRangeMap) self.addProperty('Color By', 0, attributes=om.PropertyAttributes(enumNames=['Solid Color'])) self.addProperty('Visible', True) self.addProperty('Alpha', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0, maximum=1.0, singleStep=0.1, hidden=False)) self.addProperty('Point Size', self.actor.GetProperty().GetPointSize(), attributes=om.PropertyAttributes(decimals=0, minimum=1, maximum=20, singleStep=1, hidden=False)) self.addProperty('Surface Mode', 0, attributes=om.PropertyAttributes(enumNames=['Surface', 'Wireframe', 'Surface with edges', 'Points'], hidden=True)) self.addProperty('Color', [1.0, 1.0, 1.0]) self.addProperty('Show Scalar Bar', False) self._updateSurfaceProperty() self._updateColorByProperty() if view is not None: self.addToView(view)
def __init__(self, name, polyData, view): om.ObjectModelItem.__init__(self, name, om.Icons.Robot) self.views = [] self.polyData = polyData self.mapper = vtk.vtkPolyDataMapper() self.mapper.SetInputData(self.polyData) self.actor = vtk.vtkActor() self.actor.SetMapper(self.mapper) self.shadowActor = None self.scalarBarWidget = None self.extraViewRenderers = {} self.rangeMap = dict(PolyDataItem.defaultScalarRangeMap) self.addProperty( 'Color By', 0, attributes=om.PropertyAttributes(enumNames=['Solid Color'])) self.addProperty('Visible', True) self.addProperty('Alpha', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0, maximum=1.0, singleStep=0.1, hidden=False)) self.addProperty('Point Size', self.actor.GetProperty().GetPointSize(), attributes=om.PropertyAttributes(decimals=0, minimum=1, maximum=20, singleStep=1, hidden=False)) self.addProperty('Line Width', self.actor.GetProperty().GetLineWidth(), attributes=om.PropertyAttributes(decimals=0, minimum=1, maximum=20, singleStep=1, hidden=False)) self.addProperty('Surface Mode', 0, attributes=om.PropertyAttributes(enumNames=[ 'Surface', 'Wireframe', 'Surface with edges', 'Points' ], hidden=True)) self.addProperty('Color', [1.0, 1.0, 1.0]) self.addProperty('Show Scalar Bar', False) self._updateSurfaceProperty() self._updateColorByProperty() if view is not None: self.addToView(view)
def __init__(self, name, polyData, view): om.ObjectModelItem.__init__(self, name, om.Icons.Robot) self.views = [] self.polyData = polyData self.mapper = vtk.vtkPolyDataMapper() self.mapper.SetInput(self.polyData) self.actor = vtk.vtkActor() self.actor.SetMapper(self.mapper) self.shadowActor = None self.scalarBarWidget = None self.extraViewRenderers = {} self.rangeMap = { 'intensity': (400, 4000), #'z' : (0.0, 2.0), #'distance' : (0.5, 4.0), 'spindle_angle': (0, 360), 'azimuth': (-2.5, 2.5), 'scan_delta': (0.0, 0.3) } self.addProperty( 'Color By', 0, attributes=om.PropertyAttributes(enumNames=['Solid Color'])) self.addProperty('Visible', True) self.addProperty('Alpha', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0, maximum=1.0, singleStep=0.1, hidden=False)) self.addProperty('Point Size', self.actor.GetProperty().GetPointSize(), attributes=om.PropertyAttributes(decimals=0, minimum=1, maximum=20, singleStep=1, hidden=False)) self.addProperty('Surface Mode', 0, attributes=om.PropertyAttributes(enumNames=[ 'Surface', 'Wireframe', 'Surface with edges', 'Points' ], hidden=True)) self.addProperty('Color', [1.0, 1.0, 1.0]) self.addProperty('Show Scalar Bar', False) self._updateSurfaceProperty() self._updateColorByProperty() if view is not None: self.addToView(view)
def render_depth(renWin, renderer, camera, data_dir, data_dir_name, num_im, out_dir, use_mesh, object_dir, mesh='meshed_scene.ply', keyword=None): actor = vtk.vtkActor() filter1 = vtk.vtkWindowToImageFilter() imageWriter = vtk.vtkPNGWriter() scale = vtk.vtkImageShiftScale() if use_mesh: #use meshed version of scene if not glob.glob(data_dir + "/" + mesh): out = None if glob.glob(data_dir + "/original_log.lcmlog.ply"): out = "original_log.lcmlog.ply" elif glob.glob(data_dir + "/trimmed_log.lcmlog.ply"): out = "trimmed_log.lcmlog.ply" elif glob.glob('*.ply'): out = glob.glob('*.ply')[0] else: return mesher = mesh_wrapper.Mesh(out_dir=data_dir) status = mesher.mesh_cloud(out) print status #blocks until done mapper = vtk.vtkPolyDataMapper() fileReader = vtk.vtkPLYReader() fileReader.SetFileName(data_dir + "/" + mesh) mapper.SetInputConnection(fileReader.GetOutputPort()) actor.SetMapper(mapper) renderer.AddActor(actor) else: #import just the objects objects = common.Objects(data_dir, object_dir) objects.loadObjectMeshes("/registration_result.yaml", renderer, keyword=keyword) #setup filters filter1.SetInput(renWin) filter1.SetMagnification(1) filter1.SetInputBufferTypeToZBuffer() windowToColorBuffer = vtk.vtkWindowToImageFilter() windowToColorBuffer.SetInput(renWin) windowToColorBuffer.SetInputBufferTypeToRGB() scale.SetOutputScalarTypeToUnsignedShort() scale.SetScale(1000) poses = common.CameraPoses(data_dir + "/posegraph.posegraph") for i in range(1, num_im + 1): try: utimeFile = open( data_dir + "/images/" + str(i).zfill(10) + "_utime.txt", 'r') utime = int(utimeFile.read()) #update camera transform cameraToCameraStart = poses.getCameraPoseAtUTime(utime) t = cameraToCameraStart common.setCameraTransform(camera, t) renWin.Render() #update filters filter1.Modified() filter1.Update() windowToColorBuffer.Modified() windowToColorBuffer.Update() #extract depth image depthImage = vtk.vtkImageData() pts = vtk.vtkPoints() ptColors = vtk.vtkUnsignedCharArray() vtk.vtkDepthImageUtils.DepthBufferToDepthImage( filter1.GetOutput(), windowToColorBuffer.GetOutput(), camera, depthImage, pts, ptColors) scale.SetInputData(depthImage) scale.Update() #write out depth image imageWriter.SetFileName(out_dir + str(i).zfill(10) + "_" + data_dir_name + "_depth_ground_truth.png") imageWriter.SetInputConnection(scale.GetOutputPort()) imageWriter.Write() except (IOError): break renderer.RemoveAllViewProps() renWin.Render()
def render_normals(renWin, renderer, camera, data_dir, data_dir_name, num_im, out_dir, use_mesh, object_dir, mesh='meshed_scene.ply', keyword=None): #setup rendering enviornment actor = vtk.vtkActor() filter1 = vtk.vtkWindowToImageFilter() imageWriter = vtk.vtkPNGWriter() scale = vtk.vtkImageShiftScale() if use_mesh: #use meshed version of scene if not glob.glob(data_dir + "/" + mesh): out = "original_log.lcmlog.ply" if glob.glob( data_dir + "/original_log.lcmlog.ply") else "trimmed_log.lcmlog.ply" mesher = mesh_wrapper.Mesh(out_dir=data_dir) status = mesher.mesh_cloud(out) print status #blocks until done mapper = vtk.vtkPolyDataMapper() #shading #set_material_prop(actor) set_shader_input(mapper) fileReader = vtk.vtkPLYReader() fileReader.SetFileName(data_dir + "/" + mesh) mapper.SetInputConnection(fileReader.GetOutputPort()) actor.SetMapper(mapper) renderer.AddActor(actor) else: #import just the objects objects = common.Objects(data_dir, object_dir) objects.loadObjectMeshes("/registration_result.yaml", renderer, keyword=keyword, shader=set_shader_input) #setup rendering enviornment windowToColorBuffer = vtk.vtkWindowToImageFilter() windowToColorBuffer.SetInput(renWin) windowToColorBuffer.SetInputBufferTypeToRGB() #setup camera calibration common.set_up_camera_params(camera) poses = common.CameraPoses(data_dir + "/posegraph.posegraph") for i in range(1, num_im + 1): try: utimeFile = open( data_dir + "/images/" + str(i).zfill(10) + "_utime.txt", 'r') utime = int(utimeFile.read()) #update camera transform cameraToCameraStart = poses.getCameraPoseAtUTime(utime) t = cameraToCameraStart common.setCameraTransform(camera, t) renWin.Render() windowToColorBuffer.Modified() windowToColorBuffer.Update() #write out depth image imageWriter.SetFileName(out_dir + str(i).zfill(10) + "_" + data_dir_name + "_normal_ground_truth.png") imageWriter.SetInputConnection(windowToColorBuffer.GetOutputPort()) imageWriter.Write() except (IOError): break renderer.RemoveAllViewProps() renWin.Render()
tolerance=tolerance) normal = np.array(pickPointFields.pickedNormal) image[i, j, :] = normal # add some rgb conversion step, maybe png writer does that??? return image if __name__ == '__main__': #setup view_height = 640 view_width = 480 data_dir = sys.argv[1] num_im = int(sys.argv[2]) mesh = sys.argv[3] mapper = vtk.vtkPolyDataMapper() actor = vtk.vtkActor() renderer = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() interactor = vtk.vtkRenderWindowInteractor() fileReader = vtk.vtkPLYReader() filter1 = vtk.vtkWindowToImageFilter() imageWriter = vtk.vtkBMPWriter() scale = vtk.vtkImageShiftScale() fileReader.SetFileName(sys.argv[1] + "/" + sys.argv[3]) renWin.SetSize(view_height, view_width) camera = vtk.vtkCamera() renderer.SetActiveCamera(camera) mapper.SetInputConnection(fileReader.GetOutputPort())
def handle_message(self, msg): # Limits the rate of message handling, since redrawing is done in the # message handler. self._sub.setSpeedLimit(30) # Removes the folder completely. om.removeFromObjectModel(om.findObjectByName(self._folder_name)) # Recreates folder. folder = om.getOrCreateContainer(self._folder_name) # Though strangely named, DebugData() is the object through which # drawing is done in DrakeVisualizer. d = DebugData() # Set the color map. color_map = self.create_color_map() # The scale value attributable to auto-scale. auto_force_scale = 1.0 auto_moment_scale = 1.0 auto_traction_scale = 1.0 auto_slip_velocity_scale = 1.0 max_force = -1 max_moment = -1 max_traction = -1 max_slip = -1 # TODO(sean-curtis-TRI) Remove the following comment when this # code can be exercised. # The following code is not exercised presently because the # magnitude mode is always set to kFixedLength. # Determine scaling magnitudes if autoscaling is activated. if self.magnitude_mode == ContactVisModes.kAutoScale: if self.show_spatial_force: for surface in msg.hydroelastic_contacts: force = np.array([surface.force_C_W[0], surface.force_C_W[1], surface.force_C_W[2]]) moment = np.array([surface.moment_C_W[0], surface.moment_C_W[1], surface.moment_C_W[2]]) force_mag = np.linalg.norm(force) moment_mag = np.linalg.norm(moment) if force_mag > max_force: max_force = force_mag if moment_mag > max_moment: max_moment = moment_mag # Prepare scaling information for the traction vectors. if self.show_traction_vectors: for quad_point_data in surface.quadrature_point_data: traction = np.array([quad_point_data.traction_Aq_W[0], quad_point_data.traction_Aq_W[1], quad_point_data.traction_Aq_W[2]]) max_traction = max(max_traction, np.linalg.norm(traction)) # Prepare scaling information for the slip velocity vectors. if self.show_slip_velocity_vectors: for quad_point_data in surface.quadrature_point_data: slip_speed = np.array([quad_point_data.vt_BqAq_W[0], quad_point_data.vt_BqAq_W[1], quad_point_data.vt_BqAq_W[2]]) max_slip_speed = max(max_slip_speed, np.linalg.norm(slip_speed)) # Compute scaling factors. auto_force_scale = 1.0 / max_force auto_moment_scale = 1.0 / max_moment auto_traction_scale = 1.0 / max_traction auto_slip_velocity_scale = 1.0 / max_slip_speed # TODO(drum) Consider exiting early if no visualization options are # enabled. for surface in msg.hydroelastic_contacts: view = applogic.getCurrentRenderView() # Keep track if any DebugData is written to. # Necessary to keep DrakeVisualizer from spewing messages to the # console when no DebugData is sent to director. has_debug_data = False # Draw the spatial force. if self.show_spatial_force: point = np.array([surface.centroid_W[0], surface.centroid_W[1], surface.centroid_W[2]]) force = np.array([surface.force_C_W[0], surface.force_C_W[1], surface.force_C_W[2]]) moment = np.array([surface.moment_C_W[0], surface.moment_C_W[1], surface.moment_C_W[2]]) force_mag = np.linalg.norm(force) moment_mag = np.linalg.norm(moment) # Draw the force arrow if it's of sufficient magnitude. if force_mag > self.min_magnitude: scale = self.global_scale if self.magnitude_mode == ContactVisModes.kFixedLength: # magnitude must be > 0 otherwise this force would be # skipped. scale /= force_mag d.addArrow(start=point, end=point + auto_force_scale * force * scale, tubeRadius=0.005, headRadius=0.01, color=[1, 0, 0]) has_debug_data = True # Draw the moment arrow if it's of sufficient magnitude. if moment_mag > self.min_magnitude: scale = self.global_scale if self.magnitude_mode == ContactVisModes.kFixedLength: # magnitude must be > 0 otherwise this moment would be # skipped. scale /= moment_mag d.addArrow(start=point, end=point + auto_moment_scale * moment * scale, tubeRadius=0.005, headRadius=0.01, color=[0, 0, 1]) has_debug_data = True # Iterate over all quadrature points, drawing traction and slip # velocity vectors. if self.show_traction_vectors or self.show_slip_velocity_vectors: # Arrows and/or spheres are drawn through debug data if there # exists a quadrature point. if surface.num_quadrature_points > 0: has_debug_data = True for quad_point_data in surface.quadrature_point_data: origin = np.array([quad_point_data.p_WQ[0], quad_point_data.p_WQ[1], quad_point_data.p_WQ[2]]) if self.show_traction_vectors: traction = np.array([quad_point_data.traction_Aq_W[0], quad_point_data.traction_Aq_W[1], quad_point_data.traction_Aq_W[2]]) traction_mag = np.linalg.norm(traction) # Draw the arrow only if it's of sufficient magnitude. if traction_mag > self.min_magnitude: scale = self.global_scale if self.magnitude_mode ==\ ContactVisModes.kFixedLength: # magnitude must be > 0 otherwise this traction # would be skipped. scale /= traction_mag offset = auto_traction_scale * traction * scale d.addArrow(start=origin, end=origin + offset, tubeRadius=0.000125, headRadius=0.00025, color=[1, 0, 1]) else: d.addSphere(center=origin, radius=0.000125, color=[1, 0, 1]) if self.show_slip_velocity_vectors: slip = np.array([quad_point_data.vt_BqAq_W[0], quad_point_data.vt_BqAq_W[1], quad_point_data.vt_BqAq_W[2]]) slip_mag = np.linalg.norm(slip) # Draw the arrow only if it's of sufficient magnitude. if slip_mag > self.min_magnitude: scale = self.global_scale if self.magnitude_mode ==\ ContactVisModes.kFixedLength: # magnitude must be > 0 otherwise this slip # vector would be skipped. scale /= slip_mag offset = auto_slip_velocity_scale * slip * scale d.addArrow(start=origin, end=origin + offset, tubeRadius=0.000125, headRadius=0.00025, color=[0, 1, 1]) else: d.addSphere(center=origin, radius=0.000125, color=[0, 1, 1]) # Send everything except pressure and contact edges to director. if has_debug_data: item_name = '{}, {}'.format( surface.body1_name, surface.body2_name) cls = vis.PolyDataItem item = cls(item_name, d.getPolyData(), view) om.addToObjectModel(item, folder) item.setProperty('Visible', True) item.setProperty('Alpha', 1.0) # Coloring for force and moment vectors. item.colorBy('RGB255') if self.show_pressure or self.show_contact_edges: pos, pos_above, pos_below, uvs, tri_mesh, seg_mesh = \ self.process_triangles(surface) if self.show_pressure and len(tri_mesh) > 0: # Copy data to VTK objects. vtk_uvs = vnp.getVtkFromNumpy(uvs) vtk_tris_above = vtk.vtkCellArray() vtk_tris_below = vtk.vtkCellArray() vtk_tris_above.Allocate(len(tri_mesh)) vtk_tris_below.Allocate(len(tri_mesh)) for tri in tri_mesh: vtk_tris_above.InsertNextCell(3, tri) vtk_tris_below.InsertNextCell(3, tri) vtk_polydata_tris_above = vtk.vtkPolyData() vtk_polydata_tris_above.SetPoints( vnp.getVtkPointsFromNumpy(pos_above)) vtk_polydata_tris_above.SetPolys(vtk_tris_above) vtk_polydata_tris_above.GetPointData().SetTCoords(vtk_uvs) vtk_polydata_tris_below = vtk.vtkPolyData() vtk_polydata_tris_below.SetPoints( vnp.getVtkPointsFromNumpy(pos_below)) vtk_polydata_tris_below.SetPolys(vtk_tris_below) vtk_polydata_tris_below.GetPointData().SetTCoords(vtk_uvs) vtk_mapper_above = vtk.vtkPolyDataMapper() vtk_mapper_above.SetInputData(vtk_polydata_tris_above) vtk_mapper_below = vtk.vtkPolyDataMapper() vtk_mapper_below.SetInputData(vtk_polydata_tris_below) # Feed VTK objects into director. item_name = 'Pressure between {}, {}'.format( surface.body1_name, surface.body2_name) polydata_item_above = vis.PolyDataItem( item_name, vtk_polydata_tris_above, view) polydata_item_above.actor.SetMapper(vtk_mapper_above) polydata_item_above.actor.SetTexture(self.texture) om.addToObjectModel(polydata_item_above, folder) item_name = 'Pressure between {}, {}'.format( surface.body1_name, surface.body2_name) polydata_item_below = vis.PolyDataItem( item_name, vtk_polydata_tris_below, view) polydata_item_below.actor.SetMapper(vtk_mapper_below) polydata_item_below.actor.SetTexture(self.texture) om.addToObjectModel(polydata_item_below, folder) if self.show_contact_edges and len(seg_mesh) > 0: # Copy data to VTK objects. vtk_segs = vtk.vtkCellArray() vtk_segs.Allocate(len(seg_mesh)) for seg in seg_mesh: vtk_segs.InsertNextCell(2, seg) vtk_polydata_segs = vtk.vtkPolyData() vtk_polydata_segs.SetPoints( vnp.getVtkPointsFromNumpy(pos)) vtk_polydata_segs.SetLines(vtk_segs) vtk_mapper = vtk.vtkPolyDataMapper() vtk_mapper.SetInputData(vtk_polydata_segs) vtk_mapper.Update() # Feed VTK objects into director. item_name = 'Contact edges between {}, {}'.format( surface.body1_name, surface.body2_name) polydata_item = vis.PolyDataItem( item_name, vtk_polydata_segs, view) polydata_item.actor.SetMapper(vtk_mapper) [r, g, b] = color_map.get_contrasting_color() contrasting_color = [r*255, g*255, b*255] polydata_item.actor.GetProperty().SetColor(contrasting_color) om.addToObjectModel(polydata_item, folder)
def handle_message(self, msg): # Limits the rate of message handling, since redrawing is done in the # message handler. self._sub.setSpeedLimit(30) # Removes the folder completely. om.removeFromObjectModel(om.findObjectByName(self._folder_name)) # Recreates folder. folder = om.getOrCreateContainer(self._folder_name) # Set the color map. color_map = self.create_color_map() # The scale value attributable to auto-scale. auto_force_scale = 1.0 auto_moment_scale = 1.0 auto_traction_scale = 1.0 auto_slip_velocity_scale = 1.0 max_force = -1 max_moment = -1 max_traction = -1 max_slip_speed = -1 # Determine scaling magnitudes if autoscaling is activated. if self.magnitude_mode == ContactVisModes.kAutoScale: for surface in msg.hydroelastic_contacts: if self.show_spatial_force: force = np.array([ surface.force_C_W[0], surface.force_C_W[1], surface.force_C_W[2] ]) moment = np.array([ surface.moment_C_W[0], surface.moment_C_W[1], surface.moment_C_W[2] ]) force_mag = np.linalg.norm(force) moment_mag = np.linalg.norm(moment) if force_mag > max_force: max_force = force_mag if moment_mag > max_moment: max_moment = moment_mag # Prepare scaling information for the traction vectors. if self.show_traction_vectors: for quad_point_data in surface.quadrature_point_data: traction = np.array([ quad_point_data.traction_Aq_W[0], quad_point_data.traction_Aq_W[1], quad_point_data.traction_Aq_W[2] ]) max_traction = max(max_traction, np.linalg.norm(traction)) # Prepare scaling information for the slip velocity vectors. if self.show_slip_velocity_vectors: for quad_point_data in surface.quadrature_point_data: slip_speed = np.array([ quad_point_data.vt_BqAq_W[0], quad_point_data.vt_BqAq_W[1], quad_point_data.vt_BqAq_W[2] ]) max_slip_speed = max(max_slip_speed, np.linalg.norm(slip_speed)) # Compute scaling factors. We don't want division by zero. # We don't want division by negative numbers. if max_force > 0: auto_force_scale = 1.0 / max_force if max_moment > 0: auto_moment_scale = 1.0 / max_moment if max_traction > 0: auto_traction_scale = 1.0 / max_traction if max_slip_speed > 0: auto_slip_velocity_scale = 1.0 / max_slip_speed # TODO(drum) Consider exiting early if no visualization options are # enabled. view = applogic.getCurrentRenderView() for surface in msg.hydroelastic_contacts: contact_data_folder = om.getOrCreateContainer( f'Contact data between {surface.body1_name} and ' f'{surface.body2_name}', folder) # Adds a collection of debug data to the console with the given # item name. def add_contact_data(data, item_name): # Exploit the fact that data.append is a vtkAppendPolyData # instance. The number of input connections on port zero is the # number of *actual* geometries added. If zero have been added, # do no work. if (data is None or data.append.GetNumberOfInputConnections(0) == 0): return item = vis.PolyDataItem(item_name, data.getPolyData(), view) om.addToObjectModel(item, contact_data_folder) item.setProperty('Visible', True) item.setProperty('Alpha', 1.0) item.colorBy('RGB255') # Draw the spatial force. if self.show_spatial_force: force_data = DebugData() point = np.array([ surface.centroid_W[0], surface.centroid_W[1], surface.centroid_W[2] ]) force = np.array([ surface.force_C_W[0], surface.force_C_W[1], surface.force_C_W[2] ]) moment = np.array([ surface.moment_C_W[0], surface.moment_C_W[1], surface.moment_C_W[2] ]) force_mag = np.linalg.norm(force) moment_mag = np.linalg.norm(moment) # Draw the force arrow if it's of sufficient magnitude. if force_mag > self.min_magnitude: scale = self.global_scale if self.magnitude_mode == ContactVisModes.kFixedLength: # magnitude must be > 0 otherwise this force would be # skipped. scale /= force_mag force_data.addArrow(start=point, end=point + auto_force_scale * force * scale, tubeRadius=0.001, headRadius=0.002, color=[1, 0, 0]) # Draw the moment arrow if it's of sufficient magnitude. if moment_mag > self.min_magnitude: scale = self.global_scale if self.magnitude_mode == ContactVisModes.kFixedLength: # magnitude must be > 0 otherwise this moment would be # skipped. scale /= moment_mag force_data.addArrow(start=point, end=point + auto_moment_scale * moment * scale, tubeRadius=0.001, headRadius=0.002, color=[0, 0, 1]) add_contact_data(force_data, "Spatial force") # Iterate over all quadrature points, drawing traction and slip # velocity vectors. if self.show_traction_vectors or self.show_slip_velocity_vectors: traction_data = DebugData() slip_data = DebugData() for quad_point_data in surface.quadrature_point_data: origin = np.array([ quad_point_data.p_WQ[0], quad_point_data.p_WQ[1], quad_point_data.p_WQ[2] ]) if self.show_traction_vectors: traction = np.array([ quad_point_data.traction_Aq_W[0], quad_point_data.traction_Aq_W[1], quad_point_data.traction_Aq_W[2] ]) traction_mag = np.linalg.norm(traction) # Draw the arrow only if it's of sufficient magnitude. if traction_mag > self.min_magnitude: scale = self.global_scale if self.magnitude_mode ==\ ContactVisModes.kFixedLength: # magnitude must be > 0 otherwise this traction # would be skipped. scale /= traction_mag offset = auto_traction_scale * traction * scale traction_data.addArrow(start=origin, end=origin + offset, tubeRadius=0.000125, headRadius=0.00025, color=[1, 0, 1]) else: traction_data.addSphere(center=origin, radius=0.000125, color=[1, 0, 1]) if self.show_slip_velocity_vectors: slip = np.array([ quad_point_data.vt_BqAq_W[0], quad_point_data.vt_BqAq_W[1], quad_point_data.vt_BqAq_W[2] ]) slip_mag = np.linalg.norm(slip) # Draw the arrow only if it's of sufficient magnitude. if slip_mag > self.min_magnitude: scale = self.global_scale if self.magnitude_mode ==\ ContactVisModes.kFixedLength: # magnitude must be > 0 otherwise this slip # vector would be skipped. scale /= slip_mag offset = auto_slip_velocity_scale * slip * scale slip_data.addArrow(start=origin, end=origin + offset, tubeRadius=0.000125, headRadius=0.00025, color=[0, 1, 1]) else: slip_data.addSphere(center=origin, radius=0.000125, color=[0, 1, 1]) add_contact_data(traction_data, "Traction") add_contact_data(slip_data, "Slip velocity") if self.show_pressure or self.show_contact_edges: pos, uvs, tri_mesh, seg_mesh = \ self.process_triangles(surface) if self.show_pressure and len(tri_mesh) > 0: # Copy data to VTK objects. vtk_uvs = vnp.getVtkFromNumpy(uvs) vtk_tris = vtk.vtkCellArray() vtk_tris.Allocate(len(tri_mesh)) for tri in tri_mesh: vtk_tris.InsertNextCell(3, tri) vtk_polydata_tris = vtk.vtkPolyData() vtk_polydata_tris.SetPoints(vnp.getVtkPointsFromNumpy(pos)) vtk_polydata_tris.SetPolys(vtk_tris) vtk_polydata_tris.GetPointData().SetTCoords(vtk_uvs) vtk_mapper = vtk.vtkPolyDataMapper() vtk_mapper.SetInputData(vtk_polydata_tris) # Feed VTK objects into director. item_name = 'Contact surface' polydata_item = vis.PolyDataItem(item_name, vtk_polydata_tris, view) polydata_item.actor.SetMapper(vtk_mapper) polydata_item.actor.SetTexture(self.texture) om.addToObjectModel(polydata_item, contact_data_folder) if self.show_contact_edges and len(seg_mesh) > 0: # Copy data to VTK objects. vtk_segs = vtk.vtkCellArray() vtk_segs.Allocate(len(seg_mesh)) for seg in seg_mesh: vtk_segs.InsertNextCell(2, seg) vtk_polydata_segs = vtk.vtkPolyData() vtk_polydata_segs.SetPoints(vnp.getVtkPointsFromNumpy(pos)) vtk_polydata_segs.SetLines(vtk_segs) vtk_mapper = vtk.vtkPolyDataMapper() vtk_mapper.SetInputData(vtk_polydata_segs) vtk_mapper.Update() # Feed VTK objects into director. item_name = 'Mesh edges' polydata_item = vis.PolyDataItem(item_name, vtk_polydata_segs, view) polydata_item.actor.SetMapper(vtk_mapper) [r, g, b] = color_map.get_contrasting_color() contrasting_color = [r * 255, g * 255, b * 255] polydata_item.actor.GetProperty().SetColor(contrasting_color) om.addToObjectModel(polydata_item, contact_data_folder)