def eval_model(db, net, trfs, pooling='mean', gemp=3, detailed=False, whiten=None, aqe=None, adba=None, threads=8, batch_size=16, save_feats=None, load_feats=None, dbg=()): """ Evaluate a trained model (network) on a given dataset. The dataset is supposed to contain the evaluation code. """ print("\n>> Evaluation...") query_db = db.get_query_db() # load DB feats bdescs = [] qdescs = [] bdescs = np.load(os.path.join(load_feats, 'feats.bdescs.npy')) qdescs = bdescs if whiten is not None: bdescs = common.whiten_features(tonumpy(bdescs), net.pca, **whiten) qdescs = common.whiten_features(tonumpy(qdescs), net.pca, **whiten) if adba is not None: bdescs = expand_descriptors(bdescs, **args.adba) if aqe is not None: qdescs = expand_descriptors(qdescs, db=bdescs, **args.aqe) scores = matmul(qdescs, bdescs) data_sorted = np.argsort(-scores) del bdescs del qdescs return data_sorted
def expand_descriptors(descs, db=None, alpha=0, k=0): assert k >= 0 and alpha >= 0, 'k and alpha must be non-negative' if k == 0: return descs descs = tonumpy(descs) n = descs.shape[0] db_descs = tonumpy(db if db is not None else descs) sim = matmul(descs, db_descs) if db is None: sim[np.diag_indices(n)] = 0 idx = np.argpartition(sim, int(-k), axis=1)[:, int(-k):] descs_aug = np.zeros_like(descs) for i in range(n): new_q = np.vstack([db_descs[j, :] * sim[i, j]**alpha for j in idx[i]]) new_q = np.vstack([descs[i], new_q]) new_q = np.mean(new_q, axis=0) descs_aug[i] = new_q / np.linalg.norm(new_q) return descs_aug
def eval_model(db, net, trfs, pooling='mean', gemp=3, detailed=False, whiten=None, aqe=None, adba=None, threads=8, batch_size=16, save_feats=None, load_feats=None, dbg=()): """ Evaluate a trained model (network) on a given dataset. The dataset is supposed to contain the evaluation code. """ print("\n>> Evaluation...") query_db = db.get_query_db() # extract DB feats bdescs = [] qdescs = [] if not load_feats: trfs_list = [trfs] if isinstance(trfs, str) else trfs for trfs in trfs_list: kw = dict(iscuda=net.iscuda, threads=threads, batch_size=batch_size, same_size='Pad' in trfs or 'Crop' in trfs) bdescs.append( extract_image_features(db, trfs, net, desc="DB", **kw)) # extract query feats qdescs.append( bdescs[-1] if db is query_db else extract_image_features( query_db, trfs, net, desc="query", **kw)) # pool from multiple transforms (scales) bdescs = F.normalize(pool(bdescs, pooling, gemp), p=2, dim=1) qdescs = F.normalize(pool(qdescs, pooling, gemp), p=2, dim=1) else: bdescs = np.load(os.path.join(load_feats, 'feats.bdescs.npy')) if query_db is not db: qdescs = np.load(os.path.join(load_feats, 'feats.qdescs.npy')) else: qdescs = bdescs if save_feats: mkdir(save_feats) np.save(os.path.join(save_feats, 'feats.bdescs.npy'), bdescs.cpu().numpy()) if query_db is not db: np.save(os.path.join(save_feats, 'feats.qdescs.npy'), qdescs.cpu().numpy()) if whiten is not None: bdescs = common.whiten_features(tonumpy(bdescs), net.pca, **whiten) qdescs = common.whiten_features(tonumpy(qdescs), net.pca, **whiten) if adba is not None: bdescs = expand_descriptors(bdescs, **args.adba) if aqe is not None: qdescs = expand_descriptors(qdescs, db=bdescs, **args.aqe) scores = matmul(qdescs, bdescs) del bdescs del qdescs res = {} try: aps = [ db.eval_query_AP(q, s) for q, s in enumerate(tqdm.tqdm(scores, desc='AP')) ] if not isinstance(aps[0], dict): aps = [float(e) for e in aps] if detailed: res['APs'] = aps # Queries with no relevants have an AP of -1 res['mAP'] = float(np.mean([e for e in aps if e >= 0])) else: modes = aps[0].keys() for mode in modes: apst = [float(e[mode]) for e in aps] if detailed: res['APs' + '-' + mode] = apst # Queries with no relevants have an AP of -1 res['mAP' + '-' + mode] = float( np.mean([e for e in apst if e >= 0])) except NotImplementedError: print(" AP not implemented!") try: tops = [ db.eval_query_top(q, s) for q, s in enumerate(tqdm.tqdm(scores, desc='top1')) ] if detailed: res['tops'] = tops for k in tops[0]: res['top%d' % k] = float(np.mean([top[k] for top in tops])) except NotImplementedError: pass return res
def test(db, net, trfs, pooling='mean', gemp=3, detailed=False, threads=8, batch_size=16): """ Evaluate a trained model (network) on a given dataset. The dataset is supposed to contain the evaluation code. """ print("\n>> Evaluation...") query_db = db.get_query_db() # extract DB feats bdescs = [] qdescs = [] trfs_list = [trfs] if isinstance(trfs, str) else trfs for trfs in trfs_list: kw = dict(iscuda=net.iscuda, threads=threads, batch_size=batch_size, same_size='Pad' in trfs or 'Crop' in trfs) bdescs.append(extract_image_features(db, trfs, net, desc="DB", **kw)) # extract query feats qdescs.append(bdescs[-1] if db is query_db else extract_image_features( query_db, trfs, net, desc="query", **kw)) # pool from multiple transforms (scales) bdescs = F.normalize(pool(bdescs, pooling, gemp), p=2, dim=1) qdescs = F.normalize(pool(qdescs, pooling, gemp), p=2, dim=1) bdescs = tonumpy(bdescs) qdescs = tonumpy(qdescs) scores = matmul(qdescs, bdescs) del bdescs del qdescs res = {} try: aps = [ db.eval_query_AP(q, s) for q, s in enumerate(tqdm.tqdm(scores, desc='AP')) ] if not isinstance(aps[0], dict): aps = [float(e) for e in aps] if detailed: res['APs'] = aps # Queries with no relevants have an AP of -1 res['mAP'] = float(np.mean([e for e in aps if e >= 0])) else: modes = aps[0].keys() for mode in modes: apst = [float(e[mode]) for e in aps] if detailed: res['APs' + '-' + mode] = apst # Queries with no relevants have an AP of -1 res['mAP' + '-' + mode] = float( np.mean([e for e in apst if e >= 0])) except NotImplementedError: print(" AP not implemented!") #writer.add_scalar('mAP', res['mAP'], epoch) return res
def extract_kapture_global_features(kapture_root_path: str, net, global_features_type: str, trfs, pooling='mean', gemp=3, whiten=None, threads=8, batch_size=16): """ Extract features from trained model (network) on a given dataset. """ print(f'loading {kapture_root_path}') with get_all_tar_handlers(kapture_root_path, mode={ kapture.Keypoints: 'r', kapture.Descriptors: 'r', kapture.GlobalFeatures: 'a', kapture.Matches: 'r' }) as tar_handlers: kdata = kapture_from_dir(kapture_root_path, None, skip_list=[ kapture.Keypoints, kapture.Descriptors, kapture.Matches, kapture.Points3d, kapture.Observations ], tar_handlers=tar_handlers) root = get_image_fullpath(kapture_root_path, image_filename=None) assert kdata.records_camera is not None imgs = [ image_name for _, _, image_name in kapture.flatten(kdata.records_camera) ] if kdata.global_features is None: kdata.global_features = {} if global_features_type in kdata.global_features: imgs = [ image_name for image_name in imgs if image_name not in kdata.global_features[global_features_type] ] if len(imgs) == 0: print('All global features are already extracted') return dataset = ImageList(img_list_path=None, root=root, imgs=imgs) print(f'\nEvaluation on {dataset}') # extract DB feats bdescs = [] trfs_list = [trfs] if isinstance(trfs, str) else trfs for trfs in trfs_list: kw = dict(iscuda=net.iscuda, threads=threads, batch_size=batch_size, same_size='Pad' in trfs or 'Crop' in trfs) bdescs.append( extract_image_features(dataset, trfs, net, desc="DB", **kw)) # pool from multiple transforms (scales) bdescs = tonumpy(F.normalize(pool(bdescs, pooling, gemp), p=2, dim=1)) if whiten is not None: bdescs = common.whiten_features(bdescs, net.pca, **whiten) print('writing extracted global features') os.umask(0o002) gfeat_dtype = bdescs.dtype gfeat_dsize = bdescs.shape[1] if global_features_type not in kdata.global_features: kdata.global_features[ global_features_type] = kapture.GlobalFeatures( 'dirtorch', gfeat_dtype, gfeat_dsize, 'L2') global_features_config_absolute_path = get_feature_csv_fullpath( kapture.GlobalFeatures, global_features_type, kapture_root_path) global_features_to_file( global_features_config_absolute_path, kdata.global_features[global_features_type]) else: assert kdata.global_features[ global_features_type].dtype == gfeat_dtype assert kdata.global_features[ global_features_type].dsize == gfeat_dsize assert kdata.global_features[ global_features_type].metric_type == 'L2' for i in tqdm.tqdm(range(dataset.nimg)): image_name = dataset.get_key(i) global_feature_fullpath = get_global_features_fullpath( global_features_type, kapture_root_path, image_name, tar_handlers) gfeat_i = bdescs[i, :] assert gfeat_i.shape == (gfeat_dsize, ) image_global_features_to_file(global_feature_fullpath, gfeat_i) kdata.global_features[global_features_type].add(image_name) del gfeat_i del bdescs if not global_features_check_dir( kdata.global_features[global_features_type], global_features_type, kapture_root_path, tar_handlers): print( 'global feature extraction ended successfully but not all files were saved' ) else: print('Features extracted.')