import loadGroupData import optGroupData import disGroupData from lmfit import report_fit traindays = 20 begin = 0 end = 135621 mode = 0 #[0, 1, 2, 3, 4, 5] for [multi, single, SIRd, SIR, SI, SpikeM] name = ['multi', 'single', 'SIRd', 'SIR', 'SI'] fw = open('../../' + name[mode] + '_res/params.csv', 'w') for i in range(begin, end): rawdata = loadGroupData.load_data(i) result = optGroupData.optimize(rawdata, mode) report_fit(result.params) fw.write(str(i) + ',') fw.write(str(result.params)) fw.write('\n') path = '../../' + name[mode] + '/' #disGroupData.display_bi(rawdata,result,result_test,path+str(i)+'.png') p = disGroupData.display(rawdata, result, path + str(i) + '.png', mode) if peaks.has_key(p): peaks[p] += 1 else: peaks[p] = 1 print 'No.' + str(i) + ' items finished.(' + name[i] + ')' fw.close() print peaks
import loadGroupData import optGroupData import disGroupData from lmfit import report_fit traindays = 20 begin = 0 end = 135621 mode = 0 #[0, 1, 2, 3, 4, 5] for [multi, single, SIRd, SIR, SI, SpikeM] name = ['multi', 'single', 'SIRd', 'SIR', 'SI'] fw=open('../../' + name[mode] + '_res/params.csv','w') for i in range(begin, end): rawdata=loadGroupData.load_data(i) result=optGroupData.optimize(rawdata, mode) report_fit(result.params) fw.write(str(i)+',') fw.write(str(result.params)) fw.write('\n') path='../../'+name[mode]+'/' #disGroupData.display_bi(rawdata,result,result_test,path+str(i)+'.png') p = disGroupData.display(rawdata,result,path+str(i)+'.png',mode) if peaks.has_key(p): peaks[p] += 1 else: peaks[p] = 1 print 'No.' + str(i) + ' items finished.('+name[i]+')' fw.close() print peaks
data.append(line) csvfile.close() csvfile = file('../../badID.csv', 'rb') reader = csv.reader(csvfile) baddata = list() for line in reader: baddata.append(line) csvfile.close() fw = open('../multi_predict/params.csv','w') for line in data: flag = False for per in baddata: if line[0] == per[0]: flag = True break if flag: continue index = int(line[0]) rawdata = loadGroupData.load_data(index) front = list() for i in range(4): front.append(rawdata[i][:-10]) result=optGroupData.optimize(front) report_fit(result.params) fw.write(str(result.params)) fw.write('\n') path='../multi_predict/' p = disGroupData.display(rawdata,result,path+line[0]+'.png') fw.close() print 'Finished.'
data.append(line) csvfile.close() csvfile = file('../../badID.csv', 'rb') reader = csv.reader(csvfile) baddata = list() for line in reader: baddata.append(line) csvfile.close() fw = open('../multi_predict/params.csv', 'w') for line in data: flag = False for per in baddata: if line[0] == per[0]: flag = True break if flag: continue index = int(line[0]) rawdata = loadGroupData.load_data(index) front = list() for i in range(4): front.append(rawdata[i][:-10]) result = optGroupData.optimize(front) report_fit(result.params) fw.write(str(result.params)) fw.write('\n') path = '../multi_predict/' p = disGroupData.display(rawdata, result, path + line[0] + '.png') fw.close() print 'Finished.'