def _getPipeline(): select_stage = [("split", Stage('read', process=read))] join_stage = [("group_label", Stage('join', init=join_init, process=join, done=join_done))] def combine_row(state, k, v, func): if k not in state: state[k] = 0 state[k] = state[k] + func(v) node_combine_stage = [ ("group_node_label", Stage('node_combine', init=partial(combine_init, init=lambda: {}), process=partial(combine, func=partial(combine_row, func=lambda v: 1)), done=combine_done)) ] combine_all_stage = [ ("group_label", Stage('combine_all', init=partial(combine_init, init=lambda: {}), process=partial(combine, func=partial(combine_row, func=lambda v: v)), done=combine_done)) ] return select_stage + join_stage + node_combine_stage + combine_all_stage
def measure(test_data, predictions, measure="ca", save_results=True, show=False): from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job, result_iterator from disco.worker.task_io import task_input_stream, chain_reader if measure not in ["ca", "mse"]: raise Exception("measure should be ca or mse.") if test_data.params["id_index"] == -1: raise Exception("ID index should be defined.") if predictions == []: return "No predictions", None # define a job and set save of results to ddfs job = Job(worker=Worker(save_results=save_results)) job = Job(worker=Worker(save_results=save_results)) job.pipeline = [("split", Stage("map", input_chain=test_data.params["input_chain"], init=simple_init, process=map_test_data))] job.params = test_data.params job.run(name="ma_parse_testdata", input=test_data.params["data_tag"]) parsed_testdata = job.wait(show=show) reduce_proces = reduce_ca if measure == "ca" else reduce_mse job = Job(worker=Worker(save_results=save_results)) job.pipeline = [("split", Stage("map", init=simple_init, input_chain=[task_input_stream, chain_reader], process=map_predictions)), ('group_all', Stage("reduce", init=simple_init, process=reduce_proces, sort=True, combine=True))] job.run(name="ma_measure_accuracy", input=parsed_testdata + predictions) measure, acc = [ (measure, acc) for measure, acc in result_iterator(job.wait(show=show)) ][0] return measure, acc
class CountWords(Job): def __init__(self): from disco.worker.pipeline.worker import Worker super(CountWords, self).__init__(worker=Worker()) pipeline = [("split", Stage("map", process=map, input_chain=[task_input_stream, chain_reader])), ("group_label", Stage("reduce", process=reduce, combine=True, output_chain=(task_output_stream, plain_output_stream), sort=True))]
def predict(dataset, fitmodel_url, save_results=True, show=False): """ Predict the closest clusters for the datapoints in input. """ from disco.job import Job from disco.worker.pipeline.worker import Worker, Stage from disco.core import result_iterator if "kmeans_fitmodel" not in fitmodel_url: raise Exception("Incorrect fit model.") job = Job(worker=Worker(save_results=save_results)) job.params = dict(dataset.params.items() + mean_point_center.items()) job.params["centers"] = [ (i, c) for i, c in result_iterator(fitmodel_url["kmeans_fitmodel"]) ] job.pipeline = [("split", Stage("kmeans_predict", input_chain=dataset.params["input_chain"], init=simple_init, process=predict_map))] job.run(input=dataset.params["data_tag"], name="kmeans_predict") return job.wait(show=show)
class SimplePipe(TestPipe): def map(interface, state, label, inp): out = interface.output(0) for e in inp: out.add(int(e), (bytes_to_str(e)).strip()) def reduce(interface, state, label, inp): for k, v in sorted(inp): state.append((k, v)) pipeline = [("split", Stage("map", process=map)), ("group_all", Stage("reduce", init=reduce_init, process=reduce, done=reduce_done))]
def fit(dataset, nu=0.1, save_results=True, show=False): """ Function starts a job for calculation of model parameters Parameters ---------- input - dataset object with input urls and other parameters nu - parameter to adjust the classifier save_results - save results to ddfs show - show info about job execution Returns ------- Urls of fit model results on ddfs """ from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job if dataset.params["y_map"] == []: raise Exception( "Linear proximal SVM requires a target label mapping parameter.") try: nu = float(nu) if nu <= 0: raise Exception("Parameter nu should be greater than 0") except ValueError: raise Exception("Parameter should be numerical.") job = Job(worker=Worker(save_results=save_results)) # job parallelizes mappers and joins them with one reducer job.pipeline = [("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)), ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))] job.params = dataset.params job.params["nu"] = nu job.run(name="linearsvm_fit", input=dataset.params["data_tag"]) fitmodel_url = job.wait(show=show) return {"linsvm_fitmodel": fitmodel_url} # return results url
class WordCount(Job): def __init__(self): from disco.worker.pipeline.worker import Worker super(WordCount, self).__init__(worker=Worker()) pipeline = [("split", Stage( "map", process=map, input_chain=[task_input_stream, chain_reader], output_chain=[ partial(redis_inter_stream_out, redis_server=redis_server) ], )), ("group_label", Stage("reduce", process=reduce, input_chain=[task_input_stream, redis_inter_stream_in]))]
def fit(dataset, save_results=True, show=False): from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job job = Job(worker=Worker(save_results=save_results)) job.pipeline = [("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)), ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))] job.params = dataset.params job.run(name="linreg_fit", input=dataset.params["data_tag"]) fitmodel_url = job.wait(show=show) return {"linreg_fitmodel": fitmodel_url} # return results url
class SimplerPipe(SimplePipe): def reduce_init(interface, params): return [] def reduce(interface, state, label, inp): for rec in sorted(inp): state.append((int(rec), (bytes_to_str(rec).strip()))) pipeline = [("group_all", Stage("reduce", init=reduce_init, process=reduce, done=reduce_done))]
def estimate(master, input, center, k, iterations): """ Optimize k-clustering for `iterations` iterations with cluster center definitions as given in `center`. """ from kclustering_pipeline import Estimate job = Estimate() job.pipeline = [("split", Stage("k_cluster_init_map", input_chain = [task_input_stream, reader], init = map_init, process = random_init_map)), ('group_label', Stage("k_cluster_init_reduce", process = estimate_reduce, init = simple_init))] job.params = center job.params['seed'] = 0 job.params['k'] = k job.run(input = input) centers = [(i,c) for i,c in result_iterator(job.wait())] job.purge() for j in range(iterations): job = Estimate() job.params = center job.params['k'] = k job.params['centers'] = centers job.pipeline = [('split', Stage("kcluster_map_iter_%s" %(j,), input_chain = [task_input_stream, reader], process=estimate_map, init = simple_init)), ('group_label', Stage("kcluster_reduce_iter_%s" %(j,), process=estimate_reduce, init = simple_init))] job.run(input = input) centers = [(i,c) for i,c in result_iterator(job.wait())] job.purge() return centers
def fit(dataset, save_results=True, show=False): """ Function builds a model for Naive Bayes. It executes multiple map functions and one reduce function which aggregates intermediate results and returns a model. Parameters ---------- input - dataset object with input urls and other parameters save_results - save results to ddfs show - show info about job execution Returns ------- Urls of fit model results on ddfs """ from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job # define a job and set save of results to ddfs job = Job(worker=Worker(save_results=save_results)) # job parallelizes mappers, sorts intermediate pairs and joins them with one reducer job.pipeline = [("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)), ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, sort=True, combine=True))] job.params = dataset.params # job parameters (dataset object) # define name of a job and input data urls job.run(name="naivebayes_fit", input=dataset.params["data_tag"]) fitmodel_url = job.wait(show=show) return {"naivebayes_fitmodel": fitmodel_url} # return results url
def _fit_predict(fit_data, samples, tau, save_results, show): from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job job = Job(worker=Worker(save_results=save_results)) job.pipeline = [("split", Stage("map", input_chain=fit_data.params["input_chain"], init=simple_init, process=map_fit)), ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, sort=True, combine=True))] job.params = fit_data.params job.params["tau"] = tau job.params["samples"] = samples job.run(name="lwlr_fit_predict", input=fit_data.params["data_tag"]) return job.wait(show=show)
def predict(master, input, center, centers): """ Predict the closest clusters for the datapoints in input. """ from kclustering_pipeline import Estimate job = Estimate() job.pipeline = [("split", Stage("k_cluster_predict", input_chain = [task_input_stream, reader], init = simple_init, process = predict_map))] job.params = center job.params['centers'] = centers job.run(input = input) return job.wait()
def predict(dataset, fitmodel_url, save_results=True, show=False): from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job, result_iterator if "linreg_fitmodel" not in fitmodel_url: raise Exception("Incorrect fit model.") job = Job(worker=Worker(save_results=save_results)) job.pipeline = [("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))] job.params = dataset.params job.params["thetas"] = [ v for _, v in result_iterator(fitmodel_url["linreg_fitmodel"]) ][0] job.run(name="linreg_predict", input=dataset.params["data_tag"]) return job.wait(show=show)
def predict(dataset, fitmodel_url, save_results=True, show=False): """ Function starts a job that makes predictions to input data with a given model Parameters ---------- input - dataset object with input urls and other parameters fitmodel_url - model created in fit phase save_results - save results to ddfs show - show info about job execution Returns ------- Urls with predictions on ddfs """ from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job, result_iterator if dataset.params["y_map"] == []: raise Exception( "Logistic regression requires a target label mapping parameter.") if "logreg_fitmodel" not in fitmodel_url: raise Exception("Incorrect fit model.") job = Job(worker=Worker(save_results=save_results)) # job parallelizes execution of mappers job.pipeline = [("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))] job.params = dataset.params # job parameters (dataset object) job.params["thetas"] = [ v for k, v in result_iterator(fitmodel_url["logreg_fitmodel"]) if k == "thetas" ][0] # thetas are loaded from ddfs job.run(name="logreg_predict", input=dataset.params["data_tag"]) results = job.wait(show=show) return results
def predict(dataset, fitmodel_url, coeff=0.5, save_results=True, show=False): from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job, result_iterator import discomll path = "/".join( discomll.__file__.split("/")[:-1] + ["ensemble", "core", ""]) job = Job(worker=Worker(save_results=save_results)) job.pipeline = [("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))] if "dwf_fitmodel" not in fitmodel_url: raise Exception("Incorrect fit model.") try: coeff = float(coeff) if coeff < 0: raise Exception("Parameter coeff should be greater than 0.") except ValueError: raise Exception("Parameter coeff should be numerical.") job.params = dataset.params job.params["coeff"] = coeff for k, v in result_iterator(fitmodel_url["dwf_fitmodel"]): job.params[k] = v if len(job.params["forest"]) == 0: print "Warning: There is no decision trees in forest" return [] job.run(name="distributed_weighted_forest_predict", input=dataset.params["data_tag"], required_files=[path + "decision_tree.py"]) return job.wait(show=show)
def predict(dataset, fitmodel_url, voting=False, save_results=True, show=False): from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job, result_iterator import discomll path = "/".join( discomll.__file__.split("/")[:-1] + ["ensemble", "core", ""]) if "drf_fitmodel" not in fitmodel_url: raise Exception("Incorrect fit model.") job = Job(worker=Worker(save_results=save_results)) job.pipeline = [ ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict_voting if voting else map_predict_dist)) ] job.params = dataset.params for k, v in result_iterator(fitmodel_url["drf_fitmodel"]): job.params[k] = v if len(job.params["forest"]) == 0: print "Warning: There is no decision trees in forest" return [] job.run(name="distributed_random_forest_predict", input=dataset.params["data_tag"], required_files=[path + "decision_tree.py"]) return job.wait(show=show)
def fit(dataset, trees_per_chunk=1, bootstrap=True, max_tree_nodes=50, min_samples_leaf=10, min_samples_split=5, class_majority=1, separate_max=True, measure="info_gain", accuracy=1, random_state=None, save_results=True, show=False): from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job import discomll path = "/".join( discomll.__file__.split("/")[:-1] + ["ensemble", "core", ""]) try: trees_per_chunk = int(trees_per_chunk) max_tree_nodes = int( max_tree_nodes) if max_tree_nodes != None else max_tree_nodes min_samples_leaf = int(min_samples_leaf) min_samples_split = int(min_samples_split) class_majority = float(class_majority) accuracy = int(accuracy) separate_max = separate_max if trees_per_chunk > 1 and bootstrap == False: raise Exception( "Parameter trees_per_chunk (or Trees per subset) should be 1 to disable bootstrap." ) if trees_per_chunk <= 0 or min_samples_leaf <= 0 or class_majority <= 0 or min_samples_split <= 0 and accuracy < 0 or type( bootstrap) != bool: raise Exception("Parameters should be greater than 0.") except ValueError: raise Exception("Parameters should be numerical.") if measure not in ["info_gain", "mdl"]: raise Exception("measure should be set to info_gain or mdl.") job = Job(worker=Worker(save_results=save_results)) job.pipeline = [ ("split", Stage("map", input_chain=dataset.params["input_chain"], init=map_init, process=map_fit_bootstrap if bootstrap else map_fit)), ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True)) ] job.params = dataset.params job.params["trees_per_chunk"] = trees_per_chunk job.params["max_tree_nodes"] = max_tree_nodes job.params["min_samples_leaf"] = min_samples_leaf job.params["min_samples_split"] = min_samples_split job.params["class_majority"] = class_majority job.params["measure"] = measure job.params["bootstrap"] = bootstrap job.params["accuracy"] = accuracy job.params["separate_max"] = separate_max job.params['seed'] = random_state job.run(name="forest_distributed_decision_trees_fit", input=dataset.params["data_tag"], required_files=[path + "decision_tree.py", path + "measures.py"]) fitmodel_url = job.wait(show=show) return {"fddt_fitmodel": fitmodel_url} # return results url
def predict(dataset, fitmodel_url, m=1, save_results=True, show=False): """ Function starts a job that makes predictions to input data with a given model Parameters ---------- input - dataset object with input urls and other parameters fitmodel_url - model created in fit phase m - m estimate is used with discrete features save_results - save results to ddfs show - show info about job execution Returns ------- Urls of predictions on ddfs """ from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job, result_iterator import numpy as np try: m = float(m) except ValueError: raise Exception("Parameter m should be numerical.") if "naivebayes_fitmodel" in fitmodel_url: # fit model is loaded from ddfs fit_model = dict( (k, v) for k, v in result_iterator(fitmodel_url["naivebayes_fitmodel"])) if len(fit_model["y_labels"]) < 2: print "There is only one class in training data." return [] else: raise Exception("Incorrect fit model.") if dataset.params["X_meta"].count( "d") > 0: # if there are discrete features in the model # code calculates logarithms to optimize predict phase as opposed to calculation by every mapped. np.seterr(divide='ignore') for iv in fit_model["iv"]: dist = [ fit_model.pop((y, ) + iv, 0) for y in fit_model["y_labels"] ] fit_model[iv] = np.nan_to_num( np.log( np.true_divide( np.array(dist) + m * fit_model["prior"], np.sum(dist) + m))) - fit_model["prior_log"] del (fit_model["iv"]) # define a job and set save of results to ddfs job = Job(worker=Worker(save_results=save_results)) # job parallelizes execution of mappers job.pipeline = [("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))] job.params = dataset.params # job parameters (dataset object) job.params["fit_model"] = fit_model # define name of a job and input data urls job.run(name="naivebayes_predict", input=dataset.params["data_tag"]) results = job.wait(show=show) return results
def getPipeline(count, type): intermediates = [(type, Stage("inter_%d" % i, process=intermediate)) for i in range(count)] pipeline = [("split", Stage("map", process=map))] + intermediates + [("group_label", Stage("reduce", init=reduce_init, process=reduce, done=reduce_done))] return pipeline
class SortJob(TestPipe): scheduler = {'max_cores': 7} pipeline = [("split", Stage("Map", process=Map)), ("group_label", Stage("Reduce", process=Reduce, combine=True, sort=True))]
def fit_predict(training_data, fitting_data, tau=1, samples_per_job=0, save_results=True, show=False): from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job, result_iterator from disco.core import Disco """ training_data - training samples fitting_data - dataset to be fitted to training data. tau - controls how quickly the weight of a training sample falls off with distance of its x(i) from the query point x. samples_per_job - define a number of samples that will be processed in single mapreduce job. If 0, algorithm will calculate number of samples per job. """ try: tau = float(tau) if tau <= 0: raise Exception("Parameter tau should be >= 0.") except ValueError: raise Exception("Parameter tau should be numerical.") if fitting_data.params["id_index"] == -1: raise Exception("Predict data should have id_index set.") job = Job(worker=Worker(save_results=save_results)) job.pipeline = [("split", Stage("map", input_chain=fitting_data.params["input_chain"], init=simple_init, process=map_predict))] job.params = fitting_data.params job.run(name="lwlr_read_data", input=fitting_data.params["data_tag"]) samples = {} results = [] tau = float(2 * tau**2) # calculate tau once counter = 0 for test_id, x in result_iterator(job.wait(show=show)): if samples_per_job == 0: # calculate number of samples per job if len(x) <= 100: # if there is less than 100 attributes samples_per_job = 100 # 100 samples is max per on job else: # there is more than 100 attributes samples_per_job = len(x) * -25 / 900. + 53 # linear function samples[test_id] = x if counter == samples_per_job: results.append( _fit_predict(training_data, samples, tau, save_results, show)) counter = 0 samples = {} counter += 1 if len(samples) > 0: # if there is some samples left in the the dictionary results.append( _fit_predict(training_data, samples, tau, save_results, show)) # merge results of every iteration into a single tag ddfs = Disco().ddfs ddfs.tag(job.name, [[list(ddfs.blobs(tag))[0][0]] for tag in results]) return ["tag://" + job.name]
def fit(dataset, n_clusters=5, max_iterations=10, random_state=None, save_results=True, show=False): """ Optimize k-clustering for `iterations` iterations with cluster center definitions as given in `center`. """ from disco.job import Job from disco.worker.pipeline.worker import Worker, Stage from disco.core import result_iterator try: n_clusters = int(n_clusters) max_iterations = int(max_iterations) if n_clusters < 2: raise Exception("Parameter n_clusters should be greater than 1.") if max_iterations < 1: raise Exception( "Parameter max_iterations should be greater than 0.") except ValueError: raise Exception("Parameters should be numerical.") job = Job(worker=Worker(save_results=save_results)) job.pipeline = [("split", Stage("kmeans_init_map", input_chain=dataset.params["input_chain"], init=map_init, process=random_init_map)), ('group_label', Stage("kmeans_init_reduce", process=estimate_reduce, init=simple_init, combine=True))] job.params = dict(dataset.params.items() + mean_point_center.items()) job.params['seed'] = random_state job.params['k'] = n_clusters job.run(input=dataset.params["data_tag"], name="kmeans_init") init = job.wait(show=show) centers = [(i, c) for i, c in result_iterator(init)] for j in range(max_iterations): job = Job(worker=Worker(save_results=save_results)) job.params = dict(dataset.params.items() + mean_point_center.items()) job.params['k'] = n_clusters job.params['centers'] = centers job.pipeline = [('split', Stage("kmeans_map_iter_%s" % (j + 1, ), input_chain=dataset.params["input_chain"], process=estimate_map, init=simple_init)), ('group_label', Stage("kmeans_reduce_iter_%s" % (j + 1, ), process=estimate_reduce, init=simple_init, combine=True))] job.run(input=dataset.params["data_tag"], name='kmeans_iter_%d' % (j + 1, )) fitmodel_url = job.wait(show=show) centers = [(i, c) for i, c in result_iterator(fitmodel_url)] return {"kmeans_fitmodel": fitmodel_url} # return results url
class SortJob(TestPipe): pipeline = [("split", Stage("Map", process=Map)), ("group_label", Stage("Reduce", process=Reduce, combine=True, sort=True))]
class RawJob(TestPipe): pipeline = [("split", Stage("map", process=map))]
def fit(dataset, alpha=1e-8, max_iterations=10, save_results=True, show=False): """ Function starts a job for calculation of theta parameters Parameters ---------- input - dataset object with input urls and other parameters alpha - convergence value max_iterations - define maximum number of iterations save_results - save results to ddfs show - show info about job execution Returns ------- Urls of fit model results on ddfs """ from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job, result_iterator import numpy as np if dataset.params["y_map"] == []: raise Exception( "Logistic regression requires a target label mapping parameter.") try: alpha = float(alpha) max_iterations = int(max_iterations) if max_iterations < 1: raise Exception( "Parameter max_iterations should be greater than 0.") except ValueError: raise Exception("Parameters should be numerical.") # initialize thetas to 0 and add intercept term thetas = np.zeros(len(dataset.params["X_indices"]) + 1) J = [0] # J cost function values for every iteration for i in range(max_iterations): job = Job(worker=Worker(save_results=save_results)) # job parallelizes mappers and joins them with one reducer job.pipeline = [("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)), ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))] job.params = dataset.params # job parameters (dataset object) job.params["thetas"] = thetas # every iteration set new thetas job.run(name="logreg_fit_iter_%d" % (i + 1), input=dataset.params["data_tag"]) fitmodel_url = job.wait(show=show) for k, v in result_iterator(fitmodel_url): if k == "J": # J.append(v) # save value of J cost function else: thetas = v # save new thetas if np.abs(J[-2] - J[-1]) < alpha: # check for convergence if show: print("Converged at iteration %d" % (i + 1)) break return {"logreg_fitmodel": fitmodel_url} # return results url