Пример #1
0
def scan_center(xcenter,
                ycenter,
                start,
                stop,
                step,
                list_coef,
                list_power,
                output_base,
                mat0,
                mat_pad,
                pad,
                axis="x",
                ntime=1):
    (height, width) = mat0.shape
    list_ffact = list_power * list_coef
    if axis == "x":
        for num in np.arange(start, stop + step, step):
            line_img_warped = post.unwarp_image_backward(
                mat_pad, xcenter + num + pad, ycenter + pad, list_ffact)
            line_img_warped = line_img_warped[pad:pad + height,
                                              pad:pad + width]
            name = ("0000" + str(xcenter + num))[-7:]
            io.save_image(
                output_base + "/xcenter_ntime_" + str(ntime) + "/img_" + name +
                ".jpg", mat0 + 0.5 * line_img_warped)
    else:
        for num in range(start, stop + step, step):
            line_img_warped = post.unwarp_image_backward(
                mat_pad, xcenter + pad, ycenter + num + pad, list_ffact)
            line_img_warped = line_img_warped[pad:pad + height,
                                              pad:pad + width]
            name = ("0000" + str(ycenter + num))[-7:]
            io.save_image(
                output_base + "/ycenter_ntime_" + str(ntime) + "/img_" + name +
                ".jpg", mat0 + 0.5 * line_img_warped)
Пример #2
0
 def test_unwarp_image_backward(self):
     x0, y0 = (self.wid // 2, self.hei // 2)
     list_fact = [1.0, 3.0 * 10**(-3)]
     mat = np.zeros((self.hei, self.wid), dtype=np.float32)
     mat[4:-3, 4:-3] = 1.0
     mat_warp = post.unwarp_image_backward(mat, x0, y0, list_fact)
     vals = np.mean(mat_warp, axis=0)[11:-10]
     pos = len(vals) // 2
     self.assertTrue(vals[0] < vals[pos] and vals[-1] < vals[pos])
Пример #3
0
def scan_coef(idx,
              start,
              stop,
              step,
              list_coef,
              list_power,
              output_base,
              mat0,
              mat_pad,
              pad,
              ntime=1):
    (height, width) = mat0.shape
    for num in np.arange(start, stop + step, step):
        list_coef_est = np.copy(list_coef)
        list_coef_est[idx] = list_coef_est[idx] + num
        list_ffact = list_power * list_coef_est
        line_img_warped = post.unwarp_image_backward(mat_pad, xcenter + pad,
                                                     ycenter + pad, list_ffact)
        line_img_warped = line_img_warped[pad:pad + height, pad:pad + width]
        name = ("0000" + str(list_coef_est[idx]))[-5:]
        io.save_image(
            output_base + "/coef_" + str(idx) + "_ntime_" + str(ntime) +
            "/img_" + name + ".jpg", mat0 + 0.5 * line_img_warped)
Пример #4
0
                                            list_fact)
# Calculate the residual of the unwarpped points.
list_hor_data = post.calc_residual_hor(list_uhor_lines, xcenter, ycenter)
list_ver_data = post.calc_residual_ver(list_uver_lines, xcenter, ycenter)
# Save the results for checking
io.save_plot_image(output_base + "/unwarpped_horizontal_lines.png",
                   list_uhor_lines, height, width)
io.save_plot_image(output_base + "/unwarpped_vertical_lines.png",
                   list_uver_lines, height, width)
io.save_residual_plot(output_base + "/hor_residual_after_correction.png",
                      list_hor_data, height, width)
io.save_residual_plot(output_base + "/ver_residual_after_correction.png",
                      list_ver_data, height, width)

# Correct the image
corrected_mat = post.unwarp_image_backward(mat0, xcenter, ycenter, list_fact)
# Save results.
io.save_image(output_base + "/corrected_image.jpg", corrected_mat)
io.save_image(output_base + "/difference.jpg", corrected_mat - mat0)

# ----------------------------------------
# Load original color image for correction
# ------------------------------------------

# Load coefficients from previous calculation if need to
# (xcenter, ycenter, list_fact) = io.load_metadata_txt(
#     output_base + "/coefficients_radial_distortion.txt")

img = io.load_image(file_path, average=False)
img_corrected = np.copy(img)
# Unwarped each color channel of the image
Пример #5
0
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#============================================================================
# Author: Nghia T. Vo
# E-mail: [email protected]
#============================================================================
"""
Example to show how to apply distortion correction to images of the Hazard
Cameras (Hazcams) on the underside of NASA’s Perseverance Mars rover.
"""
import numpy as np
import discorpy.losa.loadersaver as io
import discorpy.post.postprocessing as post
from PIL import Image

# Load color image
file_path = "Sol0_1st_color.png"
output_base = "figs/"
mat = np.asarray(Image.open(file_path), dtype=np.float32)
# Import distortion coefficients
(xcenter, ycenter, list_fact) = io.load_metadata_txt("figs/coefficients.txt")

for i in range(mat.shape[-1]):
    mat[:, :, i] = post.unwarp_image_backward(mat[:, :, i], xcenter, ycenter,
                                              list_fact)
io.save_image(output_base + "/Sol0_1st_color_correction.png", mat)
Пример #6
0
# Save the results for later use.
io.save_metadata_txt(output_base + "/coefficients_radial_distortion.txt",
                     xcenter, ycenter, list_fact)
print("X-center: {0}. Y-center: {1}".format(xcenter, ycenter))
print("Coefficients: {0}".format(list_fact))

# Apply correction to the lines of points
list_uhor_lines = post.unwarp_line_backward(list_hor_lines, xcenter, ycenter,
                                            list_fact)
list_uver_lines = post.unwarp_line_backward(list_ver_lines, xcenter, ycenter,
                                            list_fact)
# Save the results for checking
io.save_plot_image(output_base + "/unwarpped_horizontal_lines.png", list_uhor_lines,
                   height, width)
io.save_plot_image(output_base + "/unwarpped_vertical_lines.png", list_uver_lines,
                   height, width)
# Calculate the residual of the unwarpped points.
list_hor_data = post.calc_residual_hor(list_uhor_lines, xcenter, ycenter)
list_ver_data = post.calc_residual_ver(list_uver_lines, xcenter, ycenter)
# Save the results for checking
io.save_residual_plot(output_base + "/hor_residual_after_correction.png",
                      list_hor_data, height, width)
io.save_residual_plot(output_base + "/ver_residual_after_correction.png",
                      list_ver_data, height, width)

# Correct the image
corrected_mat = post.unwarp_image_backward(mat0, xcenter, ycenter, list_fact)
# Save results. Note that the output is 32-bit numpy array. Convert to lower-bit if need to.
io.save_image(output_base + "/corrected_image.tif", corrected_mat)
io.save_image(output_base + "/difference.tif", corrected_mat - mat0)
Пример #7
0
# Get a good estimation of the forward model
list_ffact = list_coef * list_power
# Transform to the backward model for correction
ref_points = [[i - ycenter, j - xcenter] for i in range(0, height, 50)
              for j in range(0, width, 50)]
list_bfact = proc.transform_coef_backward_and_forward(list_ffact,
                                                      ref_points=ref_points)

# Load the color image
img = io.load_image(file_path, average=False)
img_corrected = np.copy(img)

# Unwarped each color channel of the image
for i in range(img.shape[-1]):
    img_corrected[:, :,
                  i] = post.unwarp_image_backward(img[:, :, i], xcenter,
                                                  ycenter, list_bfact)

# Save the unwarped image.
io.save_image(output_base + "/F_R_hazcam_unwarped.png", img_corrected)

# Correct other images from the same camera
img = io.load_image("C:/data/percy_cam/rock_core1.png", average=False)
img_corrected = np.copy(img)
for i in range(img.shape[-1]):
    img_corrected[:, :,
                  i] = post.unwarp_image_backward(img[:, :, i], xcenter,
                                                  ycenter, list_bfact)
io.save_image(output_base + "/rock_core1_unwarped.png", img_corrected)

img = io.load_image("C:/data/percy_cam/rock_core2.png", average=False)
img_corrected = np.copy(img)
Пример #8
0
import numpy as np
import discorpy.losa.loadersaver as io
import discorpy.post.postprocessing as post

# Load image
mat0 = io.load_image("Sol0_1st_color.png")
output_base = "figs/"
(height, width) = mat0.shape
mat0 = mat0 / np.max(mat0)

# Create line pattern
line_pattern = np.zeros((height, width), dtype=np.float32)
for i in range(50, height - 50, 40):
    line_pattern[i - 1:i + 2] = 1.0

# Estimate parameters by visual inspection.
# Coarse estimation
xcenter = width / 2.0 + 110.0
ycenter = height / 2.0 - 20.0
list_pow = np.asarray([1.0, 10**(-4), 10**(-7), 10**(-10), 10**(-13)])
# Fine estimation
list_coef = np.asarray([1.0, 4.0, 5.0, 17.0, 3.0])
list_ffact = list_pow * list_coef

pad = width
mat_pad = np.pad(line_pattern, pad, mode='edge')
mat_cor = post.unwarp_image_backward(mat_pad, xcenter + pad, ycenter + pad,
                                     list_ffact)
mat_cor = mat_cor[pad:pad + height, pad:pad + width]
io.save_image(output_base + "/overlay.jpg", (mat0 + 0.5 * mat_cor))
Пример #9
0
#                                     xcenter, ycenter, num_coef)
# list_uhor_lines = post.unwarp_line_forward(list_hor_lines2, xcenter, ycenter,
#                                            list_ffact)
# list_uver_lines = post.unwarp_line_forward(list_ver_lines2, xcenter, ycenter,
#                                            list_ffact)

# Check the residual of unwarped lines:
list_hor_data = post.calc_residual_hor(list_uhor_lines, xcenter, ycenter)
list_ver_data = post.calc_residual_ver(list_uver_lines, xcenter, ycenter)
io.save_residual_plot(output_base + "/hor_residual_after_correction.png",
                      list_hor_data, height, width)
io.save_residual_plot(output_base + "/ver_residual_after_correction.png",
                      list_ver_data, height, width)

# Unwarp the image
mat_rad_corr = post.unwarp_image_backward(mat0, xcenter, ycenter, list_fact)
# Save results
io.save_image(output_base + "/image_radial_corrected.jpg", mat_rad_corr)
io.save_image(output_base + "/radial_difference.jpg", mat_rad_corr - mat0)

# -------------------------------------
# For perspective distortion correction
# -------------------------------------

# Generate source points and target points to calculate coefficients of a perspective model
source_points, target_points = proc.generate_source_target_perspective_points(
    list_uhor_lines,
    list_uver_lines,
    equal_dist=True,
    scale="mean",
    optimizing=False)