Пример #1
0
    def initialize_displacive(self, Ux, Uy, Uz, H, K, L, Qx, Qy, Qz, indices,
                              factors, nu, nv, nw, n_atm, p, centering):

        n_uvw = nu * nv * nw

        coeffs = displacive.coefficients(p)

        U_r = displacive.products(Ux, Uy, Uz, p)
        Q_k = displacive.products(Qx, Qy, Qz, p)

        U_k, i_dft = displacive.transform(U_r, H, K, L, nu, nv, nw, n_atm)

        H_nuc, K_nuc, L_nuc, \
        cond = space.condition(H, K, L, nu, nv, nw, centering)

        F, F_nuc, \
        prod, prod_nuc, \
        V_k, V_k_nuc, \
        even, \
        bragg = displacive.structure(U_k, Q_k, coeffs, cond, p, i_dft, factors)

        F_orig = np.zeros(indices.size, dtype=complex)
        F_nuc_orig = np.zeros(bragg.size, dtype=complex)

        prod_orig = np.zeros(indices.size, dtype=complex)
        prod_nuc_orig = np.zeros(bragg.size, dtype=complex)

        V_k_orig = np.zeros(indices.size, dtype=complex)
        V_k_nuc_orig = np.zeros(bragg.size, dtype=complex)

        U_k_orig = np.zeros(n_uvw * coeffs.size, dtype=complex)

        F_cand = np.zeros(indices.shape, dtype=complex)
        F_nuc_cand = np.zeros(bragg.shape, dtype=complex)

        prod_cand = np.zeros(indices.shape, dtype=complex)
        prod_nuc_cand = np.zeros(bragg.shape, dtype=complex)

        V_k_cand = np.zeros(indices.size, dtype=complex)
        V_k_nuc_cand = np.zeros(bragg.size, dtype=complex)

        U_k_cand = np.zeros(n_uvw * coeffs.size, dtype=complex)

        U_r_orig = np.zeros(coeffs.size, dtype=float)

        U_r_cand = np.zeros(coeffs.size, dtype=float)

        return U_r, U_r_orig, U_r_cand, Q_k, \
               U_k, U_k_orig, U_k_cand, \
               V_k, V_k_orig, V_k_cand, \
               V_k_nuc, V_k_nuc_orig, V_k_nuc_cand, \
               F, F_orig, F_cand, \
               F_nuc, F_nuc_orig, F_nuc_cand, \
               prod, prod_orig, prod_cand, \
               prod_nuc, prod_nuc_orig, prod_nuc_cand, \
               i_dft, coeffs, H_nuc, K_nuc, L_nuc, cond, even, bragg
Пример #2
0
    def displacive_parameters(self, p, centering):

        coeffs = displacive.coefficients(p)

        start = (np.cumsum(displacive.number(np.arange(p + 1))) -
                 displacive.number(np.arange(p + 1)))[::2]
        end = np.cumsum(displacive.number(np.arange(p + 1)))[::2]

        even = []
        for k in range(len(end)):
            even += range(start[k], end[k])
        even = np.array(even)

        nuclear = ['P', 'I', 'F', 'R', 'C', 'A', 'B']

        cntr = np.argwhere([x in centering for x in nuclear])[0][0]

        cntr += 1

        return coeffs, even, cntr
Пример #3
0
    def test_coefficients(self):

        p = 5

        coeffs = displacive.coefficients(p)

        numbers = displacive.number(np.arange(p + 1))

        self.assertEqual(coeffs.size, numbers.sum())
        self.assertEqual(coeffs[0], 1)

        even = np.isreal(coeffs)
        odd = ~np.isreal(coeffs)

        end = np.cumsum(numbers)
        start = end - numbers

        self.assertTrue(even[start[0]:end[0]].all())
        self.assertTrue(odd[start[1]:end[1]].all())
        self.assertTrue(even[start[2]:end[2]].all())
        self.assertTrue(odd[start[3]:end[3]].all())
        self.assertTrue(even[start[4]:end[4]].all())
        self.assertTrue(odd[start[5]:end[5]].all())

        self.assertAlmostEqual(coeffs[0], 1)

        self.assertAlmostEqual(coeffs[1], 1j)
        self.assertAlmostEqual(coeffs[2], 1j)
        self.assertAlmostEqual(coeffs[3], 1j)

        self.assertAlmostEqual(coeffs[4], -0.5)
        self.assertAlmostEqual(coeffs[5], -1)
        self.assertAlmostEqual(coeffs[6], -0.5)
        self.assertAlmostEqual(coeffs[7], -1)
        self.assertAlmostEqual(coeffs[8], -1)
        self.assertAlmostEqual(coeffs[9], -0.5)
Пример #4
0
    def test_displacive(self):

        a, b, c, alpha, beta, gamma = 5, 6, 7, np.pi / 2, np.pi / 3, np.pi / 4

        inv_constants = crystal.reciprocal(a, b, c, alpha, beta, gamma)

        a_, b_, c_, alpha_, beta_, gamma_ = inv_constants

        h_range, nh = [-1, 1], 5
        k_range, nk = [0, 2], 11
        l_range, nl = [-1, 0], 5

        nu, nv, nw, n_atm = 2, 5, 4, 2

        u = np.array([0.2, 0.1])
        v = np.array([0.3, 0.4])
        w = np.array([0.4, 0.5])

        atm = np.array(['Fe', 'Mn'])
        occupancy = np.array([0.75, 0.5])

        U11 = np.array([0.5, 0.3])
        U22 = np.array([0.6, 0.4])
        U33 = np.array([0.4, 0.6])
        U23 = np.array([0.05, -0.03])
        U13 = np.array([-0.04, 0.02])
        U12 = np.array([0.03, -0.02])

        twins = np.eye(3).reshape(1, 3, 3)
        variants = np.array([1.0])
        W = np.eye(3)

        A = crystal.cartesian(a, b, c, alpha, beta, gamma)
        B = crystal.cartesian(a_, b_, c_, alpha_, beta_, gamma_)
        R = crystal.cartesian_rotation(a, b, c, alpha, beta, gamma)

        U = np.row_stack((U11, U22, U33, U23, U13, U12))
        Ux, Uy, Uz = displacive.expansion(nu, nv, nw, n_atm, value=U)

        index_parameters = space.mapping(h_range, k_range, l_range, nh, nk, nl,
                                         nu, nv, nw)

        h, k, l, H, K, L, indices, inverses, operators = index_parameters

        Qh, Qk, Ql = crystal.vector(h, k, l, B)

        Qx, Qy, Qz = crystal.transform(Qh, Qk, Ql, R)

        Qx_norm, Qy_norm, Qz_norm, Q = space.unit(Qx, Qy, Qz)

        ux, uy, uz = crystal.transform(u, v, w, A)

        ix, iy, iz = space.cell(nu, nv, nw, A)

        rx, ry, rz, atms = space.real(ux, uy, uz, ix, iy, iz, atm)

        phase_factor = scattering.phase(Qx, Qy, Qz, ux, uy, uz)

        scattering_length = scattering.length(atm, Q.size)

        p = 3

        coeffs = displacive.coefficients(p)

        H_nuc, K_nuc, L_nuc, cond = space.condition(H,
                                                    K,
                                                    L,
                                                    nu,
                                                    nv,
                                                    nw,
                                                    centering='P')

        U_r = displacive.products(Ux, Uy, Uz, p)
        Q_k = displacive.products(Qx, Qy, Qz, p)

        U_k, i_dft = displacive.transform(U_r, H, K, L, nu, nv, nw, n_atm)

        factors = space.prefactors(scattering_length, phase_factor, occupancy)

        I_ref = displacive.intensity(U_k, Q_k, coeffs, cond, p, i_dft, factors)

        reduced_params = space.reduced(h_range, k_range, l_range, nh, nk, nl,
                                       nu, nv, nw)

        indices, reverses, symops, Nu, Nv, Nw = reduced_params

        symop = symmetry.laue_id(symops)

        centering = 1

        even, odd = displacive.indices(p)

        I = monocrystal.displacive(U_r, coeffs, occupancy, ux, uy, uz, atm,
                                   h_range, k_range, l_range, indices, symop,
                                   W, B, R, twins, variants, nh, nk, nl, nu,
                                   nv, nw, Nu, Nv, Nw, p, even, centering)

        np.testing.assert_array_almost_equal(I, I_ref)
Пример #5
0
    def test_structure(self):

        a, b, c, alpha, beta, gamma = 5, 6, 7, np.pi / 2, np.pi / 3, np.pi / 4

        inv_constants = crystal.reciprocal(a, b, c, alpha, beta, gamma)

        a_, b_, c_, alpha_, beta_, gamma_ = inv_constants

        h_range, nh = [-1, 1], 5
        k_range, nk = [0, 2], 11
        l_range, nl = [-1, 0], 5

        nu, nv, nw, n_atm = 2, 5, 4, 2

        u = np.array([0.2, 0.1])
        v = np.array([0.3, 0.4])
        w = np.array([0.4, 0.5])

        atm = np.array(['Fe', 'Mn'])
        occupancy = np.array([0.75, 0.5])

        U11 = np.array([0.5, 0.3])
        U22 = np.array([0.6, 0.4])
        U33 = np.array([0.4, 0.6])
        U23 = np.array([0.05, -0.03])
        U13 = np.array([-0.04, 0.02])
        U12 = np.array([0.03, -0.02])

        A = crystal.cartesian(a, b, c, alpha, beta, gamma)
        B = crystal.cartesian(a_, b_, c_, alpha_, beta_, gamma_)
        R = crystal.cartesian_rotation(a, b, c, alpha, beta, gamma)

        U = np.row_stack((U11, U22, U33, U23, U13, U12))
        Ux, Uy, Uz = displacive.expansion(nu, nv, nw, n_atm, value=U)

        index_parameters = space.mapping(h_range, k_range, l_range, nh, nk, nl,
                                         nu, nv, nw)

        h, k, l, H, K, L, indices, inverses, operators = index_parameters

        Qh, Qk, Ql = crystal.vector(h, k, l, B)

        Qx, Qy, Qz = crystal.transform(Qh, Qk, Ql, R)

        Qx_norm, Qy_norm, Qz_norm, Q = space.unit(Qx, Qy, Qz)

        ux, uy, uz = crystal.transform(u, v, w, A)

        ix, iy, iz = space.cell(nu, nv, nw, A)

        rx, ry, rz, atms = space.real(ux, uy, uz, ix, iy, iz, atm)

        phase_factor = scattering.phase(Qx, Qy, Qz, ux, uy, uz)

        scattering_length = scattering.length(atm, Q.size)

        p = 3

        coeffs = displacive.coefficients(p)

        H_nuc, K_nuc, L_nuc, cond = space.condition(H, K, L, nu, nv, nw)

        U_r = displacive.products(Ux, Uy, Uz, p)
        Q_k = displacive.products(Qx, Qy, Qz, p)

        U_k, i_dft = displacive.transform(U_r, H, K, L, nu, nv, nw, n_atm)

        factors = space.prefactors(scattering_length, phase_factor, occupancy)

        F, F_nuc, \
        prod, prod_nuc, \
        V_k, V_k_nuc, \
        even, bragg = displacive.structure(U_k, Q_k, coeffs, cond,
                                           p, i_dft, factors)

        n_hkl = Q.size
        n_xyz = nu * nv * nw * n_atm

        m = np.arange(n_xyz)
        n = np.mod(m, n_atm)

        rx_m = rx[m]
        ry_m = ry[m]
        rz_m = rz[m]

        bc = scattering.length(atm, 1)
        U_r = U_r.reshape(coeffs.shape[0], n_xyz)
        Q_k = Q_k.reshape(coeffs.shape[0], n_hkl)

        U_m = U_r[:, m]
        c_n = occupancy[n]
        b_n = bc[n]

        exp_iQ_dot_U_m = np.dot(coeffs * U_m.T, Q_k).T

        prod_ref = c_n*b_n*exp_iQ_dot_U_m*np.exp(1j*(Qx[:,np.newaxis]*rx_m+\
                                                     Qy[:,np.newaxis]*ry_m+\
                                                     Qz[:,np.newaxis]*rz_m))

        F_ref = prod_ref.sum(axis=1)
        prod_ref = prod_ref.reshape(n_hkl, nu * nv * nw,
                                    n_atm).sum(axis=1).flatten()

        np.testing.assert_array_almost_equal(F, F_ref)
        np.testing.assert_array_almost_equal(prod, prod_ref)

        cos_iQ_dot_U_m = np.dot((coeffs * U_m.T)[:, even], Q_k[even, :]).T

        prod_nuc_ref = c_n*b_n*cos_iQ_dot_U_m*\
                       np.exp(1j*(Qx[:,np.newaxis]*rx_m+\
                                  Qy[:,np.newaxis]*ry_m+\
                                  Qz[:,np.newaxis]*rz_m))

        F_nuc_ref = prod_nuc_ref.sum(axis=1)[cond]
        prod_nuc_ref = prod_nuc_ref.reshape(n_hkl, nu * nv * nw,
                                            n_atm).sum(axis=1)[cond].flatten()

        np.testing.assert_array_almost_equal(F_nuc, F_nuc_ref)
        np.testing.assert_array_almost_equal(prod_nuc, prod_nuc_ref)

        factors = (c_n * b_n * cos_iQ_dot_U_m).flatten()

        F_nuc_ref = space.bragg(Qx, Qy, Qz, rx, ry, rz, factors, cond)

        np.testing.assert_array_almost_equal(F_nuc, F_nuc_ref)
Пример #6
0
    def test_intensity(self):

        a, b, c, alpha, beta, gamma = 5, 6, 7, np.pi / 2, np.pi / 3, np.pi / 4

        inv_constants = crystal.reciprocal(a, b, c, alpha, beta, gamma)

        a_, b_, c_, alpha_, beta_, gamma_ = inv_constants

        h_range, nh = [-1, 1], 5
        k_range, nk = [0, 2], 11
        l_range, nl = [-1, 0], 5

        nu, nv, nw, n_atm = 2, 5, 4, 2

        u = np.array([0.2, 0.1])
        v = np.array([0.3, 0.4])
        w = np.array([0.4, 0.5])

        atm = np.array(['Fe', 'Mn'])
        occupancy = np.array([0.75, 0.5])

        U11 = np.array([0.5, 0.3])
        U22 = np.array([0.6, 0.4])
        U33 = np.array([0.4, 0.6])
        U23 = np.array([0.05, -0.03])
        U13 = np.array([-0.04, 0.02])
        U12 = np.array([0.03, -0.02])

        A = crystal.cartesian(a, b, c, alpha, beta, gamma)
        B = crystal.cartesian(a_, b_, c_, alpha_, beta_, gamma_)
        R = crystal.cartesian_rotation(a, b, c, alpha, beta, gamma)

        U = np.row_stack((U11, U22, U33, U23, U13, U12))
        Ux, Uy, Uz = displacive.expansion(nu, nv, nw, n_atm, value=U)

        index_parameters = space.mapping(h_range, k_range, l_range, nh, nk, nl,
                                         nu, nv, nw)

        h, k, l, H, K, L, indices, inverses, operators = index_parameters

        Qh, Qk, Ql = crystal.vector(h, k, l, B)

        Qx, Qy, Qz = crystal.transform(Qh, Qk, Ql, R)

        Qx_norm, Qy_norm, Qz_norm, Q = space.unit(Qx, Qy, Qz)

        ux, uy, uz = crystal.transform(u, v, w, A)

        ix, iy, iz = space.cell(nu, nv, nw, A)

        rx, ry, rz, atms = space.real(ux, uy, uz, ix, iy, iz, atm)

        phase_factor = scattering.phase(Qx, Qy, Qz, ux, uy, uz)

        scattering_length = scattering.length(atm, Q.size)

        p = 3

        coeffs = displacive.coefficients(p)

        H_nuc, K_nuc, L_nuc, cond = space.condition(H,
                                                    K,
                                                    L,
                                                    nu,
                                                    nv,
                                                    nw,
                                                    centering='P')

        U_r = displacive.products(Ux, Uy, Uz, p)
        Q_k = displacive.products(Qx, Qy, Qz, p)

        U_k, i_dft = displacive.transform(U_r, H, K, L, nu, nv, nw, n_atm)

        factors = space.prefactors(scattering_length, phase_factor, occupancy)

        # I = displacive.intensity(U_k, Q_k, coeffs, cond, p, i_dft, factors)
        I, F_nuc = displacive.intensity(U_k,
                                        Q_k,
                                        coeffs,
                                        cond,
                                        p,
                                        i_dft,
                                        factors,
                                        subtract=False)

        n_hkl = Q.size
        n_xyz = nu * nv * nw * n_atm

        i, j = np.triu_indices(n_xyz, 1)
        k, l = np.mod(i, n_atm), np.mod(j, n_atm)

        m = np.arange(n_xyz)
        n = np.mod(m, n_atm)

        rx_ij = rx[j] - rx[i]
        ry_ij = ry[j] - ry[i]
        rz_ij = rz[j] - rz[i]

        bc = scattering.length(atm, 1)
        U_r = U_r.reshape(coeffs.shape[0], n_xyz)
        Q_k = Q_k.reshape(coeffs.shape[0], n_hkl)

        U_i, U_j, U_m = U_r[:, i], U_r[:, j], U_r[:, m]
        c_k, c_l, c_n = occupancy[k], occupancy[l], occupancy[n]
        b_k, b_l, b_n = bc[k], bc[l], bc[n]

        exp_iQ_dot_U_m = np.dot(coeffs * U_m.T, Q_k).T
        exp_iQ_dot_U_i = np.dot(coeffs * U_i.T, Q_k).T
        exp_iQ_dot_U_j = np.dot(coeffs * U_j.T, Q_k).T

        I_ref = ((c_n**2*(b_n*b_n.conj()).real*\
                  (exp_iQ_dot_U_m*exp_iQ_dot_U_m.conj()).real).sum(axis=1)\
              + 2*(c_k*c_l*(b_k*b_l.conj()).real*
                   ((exp_iQ_dot_U_i*exp_iQ_dot_U_j.conj()*\
                    np.cos(Qx[:,np.newaxis]*rx_ij+\
                           Qy[:,np.newaxis]*ry_ij+\
                           Qz[:,np.newaxis]*rz_ij)).real+
                    (exp_iQ_dot_U_i*exp_iQ_dot_U_j.conj()*\
                    np.sin(Qx[:,np.newaxis]*rx_ij+\
                           Qy[:,np.newaxis]*ry_ij+\
                           Qz[:,np.newaxis]*rz_ij)).imag)).sum(axis=1))/n_xyz

        np.testing.assert_array_almost_equal(I, I_ref)