def get_system_details(work, prefix): wannier_dir = os.path.join(work, prefix, "wannier") scf_path = os.path.join(wannier_dir, "scf.out") E_F = fermi_from_scf(scf_path) latVecs = _Angstrom_per_bohr * latVecs_from_scf(scf_path) D = latVecs.T R = 2.0 * np.pi * np.linalg.inv(D) K_lat = np.array([1 / 3, 1 / 3, 0.0]) K_Cart = np.dot(K_lat, R) Hr = get_Hr(work, prefix) Hk = Hk_Cart(K_Cart, Hr, latVecs) Es, U = np.linalg.eigh(Hk) return latVecs, K_Cart, Hr, Es, U, E_F
def _main(): parser = argparse.ArgumentParser( "Plot band structure", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("prefix", type=str, help="Prefix for calculation") parser.add_argument( "--subdir", type=str, default=None, help="Subdirectory under work_base where calculation was run") parser.add_argument("--DFT_only", action='store_true', help="Use DFT bands only (no Wannier)") parser.add_argument("--fermi_shift", action='store_true', help="Shift plotted energies so that E_F = 0") parser.add_argument("--band_extrema", action='store_true', help="Add lines at VBM/CBM") parser.add_argument("--minE", type=float, default=None, help="Minimum energy to plot") parser.add_argument("--maxE", type=float, default=None, help="Maximum energy to plot") parser.add_argument("--plot_evecs", action='store_true', help="Plot eigenvector decomposition") parser.add_argument( "--num_layers", type=int, default=3, help="Number of layers (required if group_layer_* options given)") parser.add_argument( "--group_layer_evecs_soc", action='store_true', help="Group eigenvectors weights by layer, assuming SOC") parser.add_argument( "--group_layer_evecs_no_soc", action='store_true', help="Group eigenvectors weights by layer, assuming no SOC") parser.add_argument("--show", action='store_true', help="Show band plot instead of outputting file") args = parser.parse_args() work = _get_work(args.subdir, args.prefix) wannier_dir = os.path.join(work, "wannier") scf_path = os.path.join(wannier_dir, "scf.out") E_F = fermi_from_scf(scf_path) if args.minE is not None and args.maxE is not None: if args.fermi_shift: minE_plot = E_F + args.minE maxE_plot = E_F + args.maxE else: minE_plot = args.minE maxE_plot = args.maxE else: minE_plot, maxE_plot = None, None alat = alat_from_scf(scf_path) latVecs = latVecs_from_scf(scf_path) if args.DFT_only: Hr = None else: Hr_path = os.path.join(wannier_dir, "{}_hr.dat".format(args.prefix)) Hr = extractHr(Hr_path) bands_dir = os.path.join(work, "bands") bands_path = os.path.join(bands_dir, "{}_bands.dat".format(args.prefix)) num_bands, num_ks, qe_bands = extractQEBands(bands_path) outpath = args.prefix if args.group_layer_evecs_soc: orbitals_per_X = 6 orbitals_per_M = 10 comp_groups = make_comp_groups(orbitals_per_X, orbitals_per_M, args.num_layers) elif args.group_layer_evecs_no_soc: orbitals_per_X = 3 orbitals_per_M = 5 comp_groups = make_comp_groups(orbitals_per_X, orbitals_per_M, args.num_layers) else: comp_groups = None plotBands(qe_bands, Hr, alat, latVecs, minE_plot, maxE_plot, outpath, show=args.show, symList=band_path_labels(), fermi_energy=E_F, plot_evecs=args.plot_evecs, comp_groups=comp_groups, fermi_shift=args.fermi_shift, plot_band_extrema=args.band_extrema)
default=None) parser.add_argument('--scf_path', type=str, help="Path to QE scf output file.", default=None) parser.add_argument('--minE', type=float, help="Minimal energy to plot.", default=None) parser.add_argument('--maxE', type=float, help="Maximum energy to plot.", default=None) parser.add_argument('--show', help="Show plot before writing file.", action='store_true') args = parser.parse_args() if args.Hr_path is not None: nbnd, nks, evalsQE = extractQEBands(args.QE_path) print("QE eigenvalues loaded.") Hr = extractHr(args.Hr_path) print("Wannier Hamiltonian loaded.") alat = alat_from_scf(args.scf_path) latVecs = latVecs_from_scf(args.scf_path) plotBands(evalsQE, Hr, alat, latVecs, args.minE, args.maxE, args.outPath, args.show) else: plotDFTBands(args.QE_path, args.outPath, args.minE, args.maxE, args.show)
def make_effective_Hamiltonian_Gamma(subdir, prefix, top_two_only, verbose=False): num_layers = 3 work = _get_work(subdir, prefix) wannier_dir = os.path.join(work, "wannier") scf_path = os.path.join(wannier_dir, "scf.out") wout_path = os.path.join(wannier_dir, "{}.wout".format(prefix)) E_F = fermi_from_scf(scf_path) latVecs = latVecs_from_scf(scf_path) alat_Bohr = 1.0 R = 2 * np.pi * np.linalg.inv(latVecs.T) Gamma_cart = np.array([0.0, 0.0, 0.0]) K_lat = np.array([1 / 3, 1 / 3, 0.0]) K_cart = np.dot(K_lat, R) if verbose: print(K_cart) print(latVecs) upto_factor = 0.3 num_ks = 100 ks = vec_linspace(Gamma_cart, upto_factor * K_cart, num_ks) xs = np.linspace(0.0, upto_factor, num_ks) Hr_path = os.path.join(wannier_dir, "{}_hr.dat".format(prefix)) Hr = extractHr(Hr_path) if top_two_only: Pzs = [np.eye(get_total_orbitals(num_layers))] else: Pzs = get_layer_projections(wout_path, num_layers) H_TB_Gamma = Hk(Gamma_cart, Hr, latVecs) Es, U = np.linalg.eigh(H_TB_Gamma) if top_two_only: top = top_valence_indices(E_F, 2, Es) else: top = top_valence_indices(E_F, 2 * num_layers, Es) layer_weights, layer_basis = get_layer_basis_Gamma(U, top, Pzs, verbose) complement_basis_mat = nullspace(array_with_rows(layer_basis).conjugate()) complement_basis = [] for i in range(complement_basis_mat.shape[1]): v = complement_basis_mat[:, [i]] complement_basis.append(v / np.linalg.norm(v)) assert (len(layer_basis) + len(complement_basis) == 22 * num_layers) for vl in [v.conjugate().T for v in layer_basis]: for vc in complement_basis: assert (abs(np.dot(vl, vc)[0, 0]) < 1e-12) # 0th order effective Hamiltonian: H(Gamma) in layer basis. H_layer_Gamma = layer_Hamiltonian_0th_order(H_TB_Gamma, layer_basis) #E_repr = sum([Es[t] for t in top]) / len(top) E_repr = Es[top[0]] H_correction = correction_Hamiltonian_0th_order(Gamma_cart, Hr, latVecs, E_repr, complement_basis, layer_basis) H0_tot = H_layer_Gamma + H_correction H_PQ = correction_Hamiltonian_PQ(K_cart, Hr, latVecs, complement_basis, layer_basis) # Momentum expectation values <z_{lp}| dH/dk_{c}|_Gamma |z_l> ps = layer_Hamiltonian_ps(Gamma_cart, Hr, latVecs, layer_basis) ps_correction = correction_Hamiltonian_ps(Gamma_cart, Hr, latVecs, E_repr, complement_basis, layer_basis) ps_tot = deepcopy(ps) for i, v in enumerate(ps_correction): ps_tot[i] += v # Inverse effective masses <z_{lp}| d^2H/dk_{cp}dk_{c}|_Gamma |z_l> mstar_invs = layer_Hamiltonian_mstar_inverses(Gamma_cart, Hr, latVecs, layer_basis) mstar_invs_correction_base, mstar_invs_correction_other = correction_Hamiltonian_mstar_inverses( Gamma_cart, Hr, latVecs, E_repr, complement_basis, layer_basis) mstar_inv_tot = deepcopy(mstar_invs) for mstar_contrib in [ mstar_invs_correction_base, mstar_invs_correction_other ]: for k, v in mstar_contrib.items(): mstar_inv_tot[k] += v if verbose: print("H0") print(H_layer_Gamma) print("H_correction") print(H_correction) print("H_correction max") print(abs(H_correction).max()) print("H_PQ max") print(abs(H_PQ).max()) print("p") print(ps) print("ps max") print(max([abs(x).max() for x in ps])) print("ps correction") print(ps_correction) print("ps_correction max") print(max([abs(x).max() for x in ps_correction])) print("mstar_inv") print(mstar_invs) print("mstar_inv max") print(max([abs(v).max() for k, v in mstar_invs.items()])) print("mstar_inv_correction_base") print(mstar_invs_correction_base) print("mstar_inv_correction_base max") print( max([abs(v).max() for k, v in mstar_invs_correction_base.items()])) print("mstar_inv_correction_other") print(mstar_invs_correction_other) print("mstar_inv_correction_other max") print( max([abs(v).max() for k, v in mstar_invs_correction_other.items()])) # Fit quality plots. H_layers = [] for k in ks: q = k - Gamma_cart H_layers.append( H_kdotp(q, H_layer_Gamma, H_correction, ps, ps_correction, mstar_invs, mstar_invs_correction_base, mstar_invs_correction_other)) Emks, Umks = [], [] for band_index in range(len(layer_basis)): Emks.append([]) Umks.append([]) for k_index, Hk_layers in enumerate(H_layers): Es_layers, U_layers = np.linalg.eigh(Hk_layers) #print(k_index) #print("U", U) for band_index in range(len(layer_basis)): Emks[band_index].append(Es_layers) Umks[band_index].append(U_layers) for band_index in range(len(layer_basis)): plt.plot(xs, Emks[band_index]) TB_Emks = [] for m in range(len(top)): TB_Emks.append([]) for k in ks: this_H_TB_k = Hk(k, Hr, latVecs) this_Es, this_U = np.linalg.eigh(this_H_TB_k) for m, i in enumerate(top): TB_Emks[m].append(this_Es[i]) for TB_Em in TB_Emks: plt.plot(xs, TB_Em, 'k.') plt.show() # Effective masses. print("effective mass, top valence band, TB model: m^*_{xx; yy; xy}") print( effective_mass_band(lambda k: Hk(k, Hr, latVecs), Gamma_cart, top[0], alat_Bohr)) print( "effective mass, top valence band, k dot p model: m^*_{xx; yy; xy}" ) print( effective_mass_band( lambda k: H_kdotp(k - Gamma_cart, H_layer_Gamma, H_correction, ps, ps_correction, mstar_invs, mstar_invs_correction_base, mstar_invs_correction_other), Gamma_cart, len(layer_basis) - 1, alat_Bohr)) # Elements contributing to crossover scale. t_Gamma_a = H0_tot[0, 2] t_Gamma_b = H0_tot[0, 3] print("t_Gamma_a, t_Gamma_b") print(t_Gamma_a, t_Gamma_b) print("norm(t_Gamma_a)") print(abs(t_Gamma_a)) print("[t_Gamma]_{2, 4}, [t_Gamma]_{2, 5}") print(H0_tot[2, 4], H0_tot[2, 5]) t_Gamma_direct = H0_tot[0, 4] print("t_Gamma_direct, norm(t_Gamma_direct)") print(t_Gamma_direct, abs(t_Gamma_direct)) print("E_SL_Gamma") print([H0_tot[i, i] for i in range(6)]) print("H0_tot") print(H0_tot) Gamma_valence_max = Es[top[0]] print("H0") print_H0_LaTeX(H_layer_Gamma, Gamma_valence_max) print("H0_tot") print_H0_LaTeX(H0_tot, Gamma_valence_max) dump_model_np("{}_model_Gamma".format(prefix), H0_tot, ps_tot, mstar_inv_tot) return H0_tot, ps_tot, mstar_inv_tot
def _main(): np.set_printoptions(threshold=np.inf) parser = argparse.ArgumentParser( "TMD multilayer response to electric field", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("prefix", type=str, help="Prefix for calculation") parser.add_argument( "--subdir", type=str, default=None, help="Subdirectory under work_base where calculation was run") parser.add_argument("--num_layers", type=int, default=3, help="Number of layers") parser.add_argument("--holes", type=float, default=8e12, help="Hole concentration [cm^{-2}]") parser.add_argument("--screened", action='store_true', help="Include screening by holes") parser.add_argument( "--initial_mass", action='store_true', help= "Use effective mass at E_perp = 0, p = 0 instead of recalculating for each phi" ) parser.add_argument( "--plot_initial", action='store_true', help= "Plot initial band structure with max applied field, before charge convergence" ) args = parser.parse_args() if args.num_layers != 3: assert ("num_layers != 3 not implemented") work = _get_work(args.subdir, args.prefix) wannier_dir = os.path.join(work, "wannier") scf_path = os.path.join(wannier_dir, "scf.out") wout_path = os.path.join(wannier_dir, "{}.wout".format(args.prefix)) E_F_base = fermi_from_scf(scf_path) latVecs = latVecs_from_scf(scf_path) R = 2 * np.pi * np.linalg.inv(latVecs.T) Hr_path = os.path.join(wannier_dir, "{}_hr.dat".format(args.prefix)) Hr = extractHr(Hr_path) d_A = 6.488 # Angstrom d_bohr = _bohr_per_Angstrom * d_A hole_density_cm2 = args.holes hole_density_bohr2 = hole_density_cm2 / (10**8 * _bohr_per_Angstrom)**2 #print("hole_density_bohr2") #print(hole_density_bohr2) # Choose initial potential assuming holes are distributed uniformally. sigma_layer_initial = (1 / 3) * _e_C * hole_density_bohr2 sigmas_initial = sigma_layer_initial * np.array([1.0, 1.0, 1.0]) #print("sigmas_initial [C/bohr^2]") #print(sigmas_initial) # Dielectric constant of WSe2: # Kim et al., ACS Nano 9, 4527 (2015). # http://pubs.acs.org/doi/abs/10.1021/acsnano.5b01114 #epsilon_r = 7.2 # Effective dielectric constant from DFT (LDA). # avg(K^high_{top - bottom}, Gamma_{top - bottom}) epsilon_r = 7.87 Pzs = get_layer_projections(wout_path, args.num_layers) E_V_nms = np.linspace(0.0, 1.2, 84) if args.plot_initial: E_V_bohr = E_V_nms[-1] / (10 * _bohr_per_Angstrom) phis_initial_max = get_phis(sigmas_initial, d_bohr, E_V_bohr, epsilon_r, args.screened) plot_H_k0_phis(H_k0s, phis_initial, Pzs, band_indices, E_F_base) return if hole_density_cm2 > 0.0: tol_abs = 1e-6 * sum(sigmas_initial) else: tol_abs = 1e-12 * _e_C tol_rel = 1e-6 distr_args = [] for E_V_nm in E_V_nms: distr_args.append([ E_V_nm, R, Hr, latVecs, E_F_base, sigmas_initial, Pzs, hole_density_bohr2, d_bohr, epsilon_r, tol_abs, tol_rel, args.initial_mass, args.screened ]) with Pool() as p: nh_Es = p.starmap(hole_distribution, distr_args) plot_results(nh_Es, hole_density_bohr2, hole_density_cm2, epsilon_r, args.screened, E_V_nms)
def _main(): parser = argparse.ArgumentParser( "Plot band structure for multiple electric field values", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("prefix_E_0", type=str, help="Prefix for E = 0 calculation") parser.add_argument("prefix_E_mid", type=str, help="Prefix for E != 0 calculation, middle value") parser.add_argument("prefix_E_high", type=str, help="Prefix for E != 0 calculation, high value") parser.add_argument( "--subdir", type=str, default=None, help="Subdirectory under work_base where calculation was run") parser.add_argument( "--minE", type=float, default=1.85, help="Minimum energy to plot (using original energy zero)") parser.add_argument( "--maxE", type=float, default=5.75, help="Maximum energy to plot (using original energy zero)") parser.add_argument("--load", action='store_true', help="Load stored band data instead of recalculating") args = parser.parse_args() E_mid_val = args.prefix_E_mid.split('_')[-1] E_high_val = args.prefix_E_high.split('_')[-1] Gamma_lat = np.array([0.0, 0.0, 0.0]) M_lat = np.array([1 / 2, 0.0, 0.0]) K_lat = np.array([1 / 3, 1 / 3, 0.0]) band_path_lat = [Gamma_lat, M_lat, K_lat, Gamma_lat] band_path_labels = ["$\\Gamma$", "$M$", "$K$", "$\\Gamma$"] Nk_per_panel = 400 prefixes = [args.prefix_E_0, args.prefix_E_mid, args.prefix_E_high] labels = [ "$E = 0$", "$E = {}$ V/nm".format(E_mid_val), "$E = {}$ V/nm".format(E_high_val) ] styles = ['r-', 'b-.', 'k--'] xs, special_xs, Emks = [], [], [] if args.load: with open("Efield_bands.json", 'r') as fp: in_data = json.load(fp) xs, special_xs, Emks = list( map(lambda k: [d[k] for d in in_data], ["xs", "special_xs", "Emks"])) E_Gamma_Eperp_0 = in_data[0]["E_Gamma_Eperp_0"] else: out_data = [] for prefix_index, prefix in enumerate(prefixes): work = _get_work(args.subdir, prefix) wannier_dir = os.path.join(work, "wannier") scf_path = os.path.join(wannier_dir, "scf.out") latVecs = latVecs_from_scf(scf_path) Hr_path = os.path.join(wannier_dir, "{}_hr.dat".format(prefix)) Hr = extractHr(Hr_path) if prefix_index == 0: E_F = fermi_from_scf(scf_path) E_Gamma_Eperp_0 = get_E_Gamma(Hr, E_F) this_xs, this_special_xs, this_Emks = calculate_bands( Hr, latVecs, band_path_lat, Nk_per_panel) this_Emks = shift_Emks(this_Emks, E_Gamma_Eperp_0) xs.append(this_xs) special_xs.append(this_special_xs) Emks.append(this_Emks) out_data.append({ "prefix": prefix, "xs": this_xs, "special_xs": this_special_xs, "band_path_labels": band_path_labels, "Emks": this_Emks, "E_Gamma_Eperp_0": E_Gamma_Eperp_0 }) with open("Efield_bands.json", 'w') as fp: json.dump(out_data, fp) full_min_x, full_max_x = 0.0, 1.0 full_minE, full_maxE = args.minE - E_Gamma_Eperp_0, args.maxE - E_Gamma_Eperp_0 print("full_minE = ", full_minE) print("full_maxE = ", full_maxE) for this_xs, this_Emks, path_suffix in zip(xs, Emks, ["0.0", "0.5", "1.0"]): out_path = "Efield_bands_E_{}.csv".format(path_suffix) write_bands_csv(this_xs, this_Emks, out_path) write_bands_aux(special_xs[0], band_path_labels, "Efield_bands_aux.csv") plot_bands([xs[0], xs[-1]], special_xs[0], band_path_labels, [Emks[0], Emks[-1]], [labels[0], labels[-1]], [styles[0], styles[-1]], [full_min_x, full_max_x], [full_minE, full_maxE], "full") x_K = special_xs[0][2] zoom_xlim = [x_K - 0.05, x_K + 0.05] zoom_special_xs = [zoom_xlim[0], x_K, zoom_xlim[-1]] zoom_band_path_labels = [ "$\\leftarrow M$", "$K$", "$\\rightarrow \\Gamma$" ] zoom_ylim = [-0.3, 0.1] print("zoom_xlim = ", zoom_xlim) print("zoom_ylim = ", zoom_ylim) plot_bands(xs, zoom_special_xs, zoom_band_path_labels, Emks, labels, styles, zoom_xlim, zoom_ylim, "zoom")
def get_occupations(prefix, subdir, screened, d_bohr, hole_density_bohr2, sigmas_initial, epsilon_r): work = _get_work(subdir, prefix) wannier_dir = os.path.join(work, "wannier") scf_path = os.path.join(wannier_dir, "scf.out") wout_path = os.path.join(wannier_dir, "{}.wout".format(prefix)) E_F = fermi_from_scf(scf_path) latVecs = latVecs_from_scf(scf_path) alat_Bohr = 1.0 R = 2 * np.pi * np.linalg.inv(latVecs.T) Gamma_cart = np.array([0.0, 0.0, 0.0]) K_lat = np.array([1 / 3, 1 / 3, 0.0]) K_cart = np.dot(K_lat, R) Hr_path = os.path.join(wannier_dir, "{}_hr.dat".format(prefix)) Hr = extractHr(Hr_path) H_TB_Gamma = Hk(Gamma_cart, Hr, latVecs) Es_Gamma, U_Gamma = np.linalg.eigh(H_TB_Gamma) H_TB_K = Hk(K_cart, Hr, latVecs) Es_K, U_K = np.linalg.eigh(H_TB_K) top_Gamma = top_valence_indices(E_F, 2, Es_Gamma) top_K = top_valence_indices(E_F, 3, Es_Gamma) assert (top_Gamma == [41, 40]) assert (top_K == [41, 40, 39]) E_top_Gamma, E_top_K = Es_Gamma[top_Gamma[0]], Es_K[top_K[0]] Ediff = E_top_Gamma - E_top_K def Hfn(k): return Hk(k, Hr, latVecs) mstar_top_Gamma = effective_mass_band(Hfn, Gamma_cart, top_Gamma[0], alat_Bohr) mstar_top_K = effective_mass_band(Hfn, K_cart, top_K[0], alat_Bohr) mstar_Gamma = mstar_top_Gamma[0] mstar_K = mstar_top_K[0] num_layers = 3 Pzs = get_layer_projections(wout_path, num_layers) if hole_density_bohr2 > 0.0: tol_abs = 1e-6 * sum(sigmas_initial) else: tol_abs = 1e-12 * _e_C tol_rel = 1e-6 nh_Gamma, nh_K, E_Gamma, E_K = hole_distribution(0.0, R, Hr, latVecs, E_F, sigmas_initial, Pzs, hole_density_bohr2, d_bohr, epsilon_r, tol_abs, tol_rel, screened=screened) if hole_density_bohr2 > 0.0: nh_Gamma_frac = nh_Gamma / hole_density_bohr2 nh_K_frac = nh_K / hole_density_bohr2 else: nh_Gamma_frac = 0.0 nh_K_frac = 0.0 return Ediff, mstar_Gamma, mstar_K, nh_Gamma_frac, nh_K_frac, E_Gamma, E_K
def make_effective_Hamiltonian_K(k0_lat, subdir, prefix, get_layer_basis, verbose=False): num_layers = 3 work = _get_work(subdir, prefix) wannier_dir = os.path.join(work, "wannier") scf_path = os.path.join(wannier_dir, "scf.out") wout_path = os.path.join(wannier_dir, "{}.wout".format(prefix)) E_F = fermi_from_scf(scf_path) latVecs = latVecs_from_scf(scf_path) alat_Bohr = 1.0 R = 2 * np.pi * np.linalg.inv(latVecs.T) K_cart = np.dot(k0_lat, R) if verbose: print(K_cart) print(latVecs) reduction_factor = 0.7 num_ks = 100 ks = vec_linspace(K_cart, reduction_factor * K_cart, num_ks) xs = np.linspace(1, reduction_factor, num_ks) Hr_path = os.path.join(wannier_dir, "{}_hr.dat".format(prefix)) Hr = extractHr(Hr_path) Pzs = get_layer_projections(wout_path, num_layers) H_TB_K = Hk(K_cart, Hr, latVecs) Es, U = np.linalg.eigh(H_TB_K) top = top_valence_indices(E_F, 2 * num_layers, Es) layer_weights, layer_basis = get_layer_basis(U, top, Pzs, verbose) complement_basis_mat = nullspace(array_with_rows(layer_basis).conjugate()) complement_basis = [] for i in range(complement_basis_mat.shape[1]): v = complement_basis_mat[:, [i]] complement_basis.append(v / np.linalg.norm(v)) assert (len(layer_basis) + len(complement_basis) == 22 * num_layers) for vl in [v.conjugate().T for v in layer_basis]: for vc in complement_basis: assert (abs(np.dot(vl, vc)[0, 0]) < 1e-12) # 0th order effective Hamiltonian: H(K) in layer basis. H_layer_K = layer_Hamiltonian_0th_order(H_TB_K, layer_basis) #E_repr = sum([Es[t] for t in top]) / len(top) E_repr = Es[top[0]] H_correction = correction_Hamiltonian_0th_order(K_cart, Hr, latVecs, E_repr, complement_basis, layer_basis) H0_tot = H_layer_K + H_correction H_PQ = correction_Hamiltonian_PQ(K_cart, Hr, latVecs, complement_basis, layer_basis) # Momentum expectation values <z_{lp}| dH/dk_{c}|_K |z_l> ps = layer_Hamiltonian_ps(K_cart, Hr, latVecs, layer_basis) ps_correction = correction_Hamiltonian_ps(K_cart, Hr, latVecs, E_repr, complement_basis, layer_basis) ps_tot = deepcopy(ps) for i, v in enumerate(ps_correction): ps_tot[i] += v # Inverse effective masses <z_{lp}| d^2H/dk_{cp}dk_{c}|_K |z_l> mstar_invs = layer_Hamiltonian_mstar_inverses(K_cart, Hr, latVecs, layer_basis) mstar_invs_correction_base, mstar_invs_correction_other = correction_Hamiltonian_mstar_inverses( K_cart, Hr, latVecs, E_repr, complement_basis, layer_basis) mstar_inv_tot = deepcopy(mstar_invs) for mstar_contrib in [ mstar_invs_correction_base, mstar_invs_correction_other ]: for k, v in mstar_contrib.items(): mstar_inv_tot[k] += v if verbose: print("H0") print(H_layer_K) print("H_correction") print(H_correction) print("H_correction max") print(abs(H_correction).max()) print("H_PQ max") print(abs(H_PQ).max()) print("ps") print(ps) print("ps max") print(max([abs(x).max() for x in ps])) print("ps correction") print(ps_correction) print("ps_correction max") print(max([abs(x).max() for x in ps_correction])) print("mstar_inv") print(mstar_invs) print("mstar_inv max") print(max([abs(v).max() for k, v in mstar_invs.items()])) print("mstar_inv_correction_base") print(mstar_invs_correction_base) print("mstar_inv_correction_base max") print( max([abs(v).max() for k, v in mstar_invs_correction_base.items()])) print("mstar_inv_correction_other") print(mstar_invs_correction_other) print("mstar_inv_correction_other max") print( max([abs(v).max() for k, v in mstar_invs_correction_other.items()])) # Fit quality plots. H_layers = [] for k in ks: q = k - K_cart H_layers.append( H_kdotp(q, H_layer_K, H_correction, ps, ps_correction, mstar_invs, mstar_invs_correction_base, mstar_invs_correction_other)) Emks, Umks = [], [] for band_index in range(len(layer_basis)): Emks.append([]) Umks.append([]) for k_index, Hk_layers in enumerate(H_layers): Es, U = np.linalg.eigh(Hk_layers) #print(k_index) #print("U", U) for band_index in range(len(layer_basis)): Emks[band_index].append(Es) Umks[band_index].append(U) for band_index in range(len(layer_basis)): plt.plot(xs, Emks[band_index]) TB_Emks = [] for m in range(len(top)): TB_Emks.append([]) for k in ks: this_H_TB_k = Hk(k, Hr, latVecs) this_Es, this_U = np.linalg.eigh(this_H_TB_k) for m, i in enumerate(top): TB_Emks[m].append(this_Es[i]) for TB_Em in TB_Emks: plt.plot(xs, TB_Em, 'k.') plt.show() plt.clf() # Effective masses. print( "effective mass, top valence band, TB model: m^*_{xx; yy; xy} / m_e" ) mstar_TB = effective_mass_band(lambda k: Hk(k, Hr, latVecs), K_cart, top[0], alat_Bohr) print(mstar_TB) print( "effective mass, top valence band, k dot p model: m^*_{xx; yy; xy} / m_e" ) mstar_kdotp = effective_mass_band( lambda k: H_kdotp(k - K_cart, H_layer_K, H_correction, ps, ps_correction, mstar_invs, mstar_invs_correction_base, mstar_invs_correction_other), K_cart, len(layer_basis) - 1, alat_Bohr) print(mstar_kdotp) # Elements contributing to crossover scale. t_K = H0_tot[1, 2] t_K_25 = H0_tot[2, 5] Delta_K = H0_tot[1, 1] - H0_tot[2, 2] lambda_SO = H0_tot[1, 1] - H0_tot[0, 0] t_K_direct = H0_tot[1, 5] print("t_K, Delta_K, lambda_SO") print(t_K, Delta_K, lambda_SO) print("t_K_25") print(t_K_25) print("norm(t_K), norm(t_K_25)") print(abs(t_K), abs(t_K_25)) print("t_K_direct, norm(t_K_direct)") print(t_K_direct, abs(t_K_direct)) print("E_SL_K top") print([H0_tot[i, i] for i in [1, 3, 5]]) print("E_SL_K bottom") print([H0_tot[i, i] for i in [0, 2, 4]]) # Elements contributing to effective dielectric constant. print("Layer on-site energy differences:") print( "Top group of bands: middle layer - bottom layer; top layer - middle layer" ) print(H0_tot[3, 3] - H0_tot[1, 1], H0_tot[5, 5] - H0_tot[3, 3]) print( "Bottom group of bands: middle layer - bottom layer; top layer - middle layer" ) print(H0_tot[2, 2] - H0_tot[0, 0], H0_tot[4, 4] - H0_tot[2, 2]) H_TB_Gamma = Hk_recip(np.array([0.0, 0.0, 0.0]), Hr) Es_Gamma, U_Gamma = np.linalg.eigh(H_TB_Gamma) Gamma_valence_max = Es_Gamma[top[0]] print("H0") print_H0_LaTeX(H_layer_K, Gamma_valence_max) print("H0_tot") print_H0_LaTeX(H0_tot, Gamma_valence_max) dump_model_np("{}_model_K".format(prefix), H0_tot, ps_tot, mstar_inv_tot) phases = {(i, j): cmath.phase(H0_tot[i, j]) for i, j in [(0, 3), (1, 2), (2, 5), (3, 4)]} phase_factors = list( map(lambda x: np.exp(-1j * x), [ -phases[(0, 3)], -phases[(1, 2)], 0.0, 0.0, phases[(3, 4)], phases[(2, 5)] ])) phase_U = np.diag(phase_factors) H0_tot_real_hop = np.dot(phase_U.conjugate().T, np.dot(H0_tot, phase_U)) print("H0_tot_real_hop") print_H0_LaTeX(H0_tot_real_hop, Gamma_valence_max) return H0_tot, ps_tot, mstar_inv_tot