Пример #1
0
                                    user_markings[s].append((x, y))
                                    user_ips[s].append(ip)

        except (KeyError, ValueError):
            #classification["annotations"]
            user_index += -1

    if user_markings[5] == []:
        print "skipping empty"
        subject_index += -1
        continue

    clusters = {}

    user_identified_penguins, clusters[5] = DivisiveDBSCAN(3).fit(
        user_markings[5], user_ips[5], debug=True
    )  #,base_directory + "/Databases/penguins/images/"+object_id+".JPG")
    penguins_at[5].append(len(user_identified_penguins))
    print str(5) + "  -  " + str(len(user_identified_penguins))

    user_identified_penguins, clusters[20] = DivisiveDBSCAN(6).fit(
        user_markings[20], user_ips[20], debug=True
    )  #,base_directory + "/Databases/penguins/images/"+object_id+".JPG")
    penguins_at[20].append(len(user_identified_penguins))
    print str(20) + "  -  " + str(len(user_identified_penguins))

    notFound = 0
    total = 0
    for clusterIndex in range(len(clusters[5])):
        newCluster = []
        total += 1
Пример #2
0
        except (KeyError, ValueError):
            #classification["annotations"]
            user_index += -1
    t = zip(complete_annotations, num_annotations)
    print[c for n, c in t if n]
    print[c for n, c in t if not (n)]
    if user_markings[5] == []:
        print "skipping empty"
        subject_index += -1
        continue

    for s in steps:

        user_identified_penguins = DivisiveDBSCAN(3).fit(
            user_markings[s], user_ips[s]
        )  #,base_directory + "/Databases/penguins/images/"+object_id+".JPG")
        penguins_at[s].append(len(user_identified_penguins))
        print str(s) + "  -  " + str(len(user_identified_penguins))

    # url = subject["location"]["standard"]
    # object_id= str(subject["_id"])
    # image_path = base_directory+"/Databases/penguins/images/"+object_id+".JPG"
    # if not(os.path.isfile(image_path)):
    #     urllib.urlretrieve(url, image_path)
    #
    # image_file = cbook.get_sample_data(base_directory + "/Databases/penguins/images/"+object_id+".JPG")
    # image = plt.imread(image_file)
    # fig, ax = plt.subplots()
    # im = ax.imshow(image)
    # plt.show()