Пример #1
0
def coscia_apply(modelObj: DynamicDLModel, data: dict):
    from dl.common.padorcut import padorcut
    from dl.common.preprocess_train import split_mirror
    from scipy.ndimage import zoom
    try:
        np
    except:
        import numpy as np

    from dl.labels.thigh import long_labels as LABELS_DICT

    MODEL_RESOLUTION = np.array([1.037037, 1.037037])
    MODEL_SIZE = (432, 432)
    netc = modelObj.model
    resolution = np.array(data['resolution'])
    zoomFactor = resolution / MODEL_RESOLUTION
    img = data['image']
    originalShape = img.shape
    img = zoom(img, zoomFactor)  # resample the image to the model resolution
    img = padorcut(img, MODEL_SIZE)
    segmentation = netc.predict(
        np.expand_dims(np.stack([img, np.zeros(MODEL_SIZE)], axis=-1), axis=0))
    labelsMask = np.argmax(np.squeeze(segmentation[0, :, :, :13]), axis=2)
    if (data['split_laterality']):
        a1, a2, a3, a4, b1, b2 = split_mirror(img)
        labelsMask_left = np.zeros(MODEL_SIZE, dtype='float32')
        labelsMask_right = np.zeros(MODEL_SIZE, dtype='float32')
        labelsMask_left[int(b1):int(b2),
                        int(a1):int(a2)] = labelsMask[int(b1):int(b2),
                                                      int(a1):int(a2)]
        labelsMask_right[int(b1):int(b2),
                         int(a3):int(a4)] = labelsMask[int(b1):int(b2),
                                                       int(a3):int(a4)]
        labelsMask_left = zoom(labelsMask_left, 1 / zoomFactor, order=0)
        labelsMask_left = padorcut(labelsMask_left,
                                   originalShape).astype(np.int8)
        labelsMask_right = zoom(labelsMask_right, 1 / zoomFactor, order=0)
        labelsMask_right = padorcut(labelsMask_right,
                                    originalShape).astype(np.int8)
        outputLabels = {}
        for labelValue, labelName in LABELS_DICT.items():
            outputLabels[labelName +
                         '_L'] = (labelsMask_left == labelValue).astype(
                             np.int8)
            outputLabels[labelName +
                         '_R'] = (labelsMask_right == labelValue).astype(
                             np.int8)

        return outputLabels
    else:
        labelsMask = zoom(labelsMask, 1 / zoomFactor, order=0)
        labelsMask = padorcut(labelsMask, originalShape).astype(np.int8)
        outputLabels = {}
        for labelValue, labelName in LABELS_DICT.items():
            outputLabels[labelName] = (labelsMask == labelValue).astype(
                np.int8)

        return outputLabels
Пример #2
0
def class_apply(modelObj: DynamicDLModel, data: dict):
    from dl.common.padorcut import padorcut
    from scipy.ndimage import zoom
    try:
        np
    except:
        import numpy as np
    
    LABELS_DICT = {
        0: 'Thigh',
        1: 'Leg'
        }
    
    MODEL_RESOLUTION = np.array([1.037037, 1.037037])*432/128 # the resolution is for an image of 432x432 but we process 128x128 images
    MODEL_SIZE = (128,128)
    netc = modelObj.model
    resolution = np.array(data['resolution'])
    zoomFactor = resolution/MODEL_RESOLUTION
    img = data['image']
    img = zoom(img, zoomFactor) # resample the image to the model resolution
    img = padorcut(img, MODEL_SIZE)
    categories = netc.predict(np.expand_dims(img,axis=0))
    value = categories[0].argmax()
    try:
        return LABELS_DICT[value]
    except KeyError:
        return None
Пример #3
0
def calcTransform(dataFix, dataFixInfo, dataMov, dataMovInfo, doElastix=True):

    if type(dataFixInfo) != list:
        dataFixInfo = [dataFixInfo]  # make sure that dataFixInfo is a list

    twoDMode = (len(dataFixInfo) == 1
                )  # this identifies 2d mode: fix data is a single slice
    assert not twoDMode or not doElastix, "Elastix registration can only be used in 3D mode"

    #print("2D Mode", twoDMode)

    transform = DatasetTransform()

    movSz = np.array(
        [dataMovInfo[0].Rows, dataMovInfo[0].Columns,
         len(dataMovInfo)],
        dtype=np.uint16)
    fixSz = np.array(
        [dataFixInfo[0].Rows, dataFixInfo[0].Columns,
         len(dataFixInfo)],
        dtype=np.uint16)

    # print(movSz, fixSz)

    rowMovOrientation = np.array(dataMovInfo[0].ImageOrientationPatient[3:6])
    colMovOrientation = np.array(dataMovInfo[0].ImageOrientationPatient[0:3])
    slcMovOrientation = np.cross(rowMovOrientation, colMovOrientation)

    # get difference between two slices
    sliceMovDiff = np.array(dataMovInfo[1].ImagePositionPatient) - np.array(
        dataMovInfo[0].ImagePositionPatient)

    if np.dot(sliceMovDiff, slcMovOrientation) < 0:
        transform.swapSlicesMoving = True
        if doElastix:
            dataMov = dataMov[:, :, ::-1]  # invert slice orientation
        dataMovInfo = dataMovInfo[::-1]

    rowFixOrientation = np.array(dataFixInfo[0].ImageOrientationPatient[3:6])
    colFixOrientation = np.array(dataFixInfo[0].ImageOrientationPatient[0:3])
    slcFixOrientation = np.cross(rowFixOrientation, colFixOrientation)

    if not twoDMode:
        # get difference between two slices
        sliceFixDiff = np.array(
            dataFixInfo[1].ImagePositionPatient) - np.array(
                dataFixInfo[0].ImagePositionPatient)

        if np.dot(sliceFixDiff, slcFixOrientation) < 0:
            transform.swapSlicesFix = True
            if doElastix:
                dataFix = dataFix[:, :, ::-1]  # invert slice orientation
            dataFixInfo = dataFixInfo[::-1]

    # print(np.array(dataMovInfo[0].ImagePositionPatient))
    # print(np.array(dataFixInfo[0].ImagePositionPatient))

    ijkMov = np.array(
        [rowMovOrientation, colMovOrientation, slcMovOrientation]).T
    ijkFix = np.array(
        [rowFixOrientation, colFixOrientation, slcFixOrientation]).T

    # print(ijkMov, ijkFix)

    MovToFix = np.matmul(ijkFix.T, ijkMov)

    angles = rotationMatrixToEulerAngles(MovToFix)

    transform.rotationAngles = angles

    try:
        sliceResMov = dataMovInfo[0].SpacingBetweenSlices
    except:
        sliceResMov = dataMovInfo[0].SliceThickness

    try:
        sliceResFix = dataFixInfo[0].SpacingBetweenSlices
    except:
        sliceResFix = dataFixInfo[0].SliceThickness

    if twoDMode:
        sliceResFix = dataFixInfo[
            0].SliceThickness  # force slice thickness in case of 2d mode

    MovResolution = np.hstack([dataMovInfo[0].PixelSpacing, sliceResMov])
    FixResolution = np.hstack([dataFixInfo[0].PixelSpacing, sliceResFix])

    MovCenterPoint = (movSz.astype(np.float32) - 1) / 2
    FixCenterPoint = (fixSz.astype(np.float32) - 1) / 2

    if doElastix:
        print("Rotating...")
        dataMovRotated = ndimage.rotate(dataMov, angles[0], axes=(1, 2))
        dataMovRotated = ndimage.rotate(dataMovRotated, angles[1], axes=(0, 2))
        dataMovRotated = ndimage.rotate(dataMovRotated, angles[2], axes=(0, 1))

    rotatedMovResolution = np.matmul(MovToFix, MovResolution)

    zoom = np.abs(rotatedMovResolution / FixResolution)

    transform.zoom = zoom

    if doElastix:
        dataMovExtended = ndimage.zoom(dataMovRotated, zoom)

    # MovCenterPointWorld = np.matmul(ijkMov,MovCenterPoint.T*MovResolution + np.hstack([ dataMovInfo[0].PixelSpacing, dataMovInfo[0].SliceThickness ])/2 ) + dataMovInfo[0].ImagePositionPatient
    # FixCenterPointWorld = np.matmul(ijkFix,FixCenterPoint.T*FixResolution + np.hstack([ dataFixInfo[0].PixelSpacing, dataFixInfo[0].SliceThickness ])/2 ) + dataFixInfo[0].ImagePositionPatient
    MovCenterPointWorld = np.matmul(
        ijkMov,
        MovCenterPoint.T * MovResolution) + dataMovInfo[0].ImagePositionPatient
    FixCenterPointWorld = np.matmul(
        ijkFix,
        FixCenterPoint.T * FixResolution) + dataFixInfo[0].ImagePositionPatient

    #print(MovCenterPointWorld, FixCenterPointWorld)

    diffCenterWorld = (FixCenterPointWorld - MovCenterPointWorld)

    diffCenter = np.matmul(ijkFix.T, diffCenterWorld.T) / FixResolution

    shift = -diffCenter

    transform.shift = shift

    transform.endSize = fixSz

    if doElastix:
        dataMovShifted = ndimage.shift(dataMovExtended, shift)

        #dataFix2 = padorcut(dataFix, fixSz + 8)
        dataMov2 = padorcut(dataMovShifted, fixSz)

        #fixMask = np.zeros_like(dataFix2)
        #fixMask[dataFix2 > 1] = 1
        elastixImageFilter = sitk.ElastixImageFilter()
        elastixImageFilter.SetLogToConsole(False)
        elastixImageFilter.SetLogToFile(False)

        elastixImageFilter.SetParameterMap(
            sitk.GetDefaultParameterMap("affine"))
        elastixImageFilter.SetFixedImage(sitk.GetImageFromArray(dataFix))
        #elastixImageFilter.SetFixedMask(sitk.GetImageFromArray(fixMask.astype(np.uint8)))
        elastixImageFilter.SetMovingImage(sitk.GetImageFromArray(dataMov2))
        print("Registering...")
        #elastixImageFilter.SetLogToFile(True)
        #elastixImageFilter.SetLogFileName('elastix.log')
        elastixImageFilter.Execute()

        transform.elastixTransform = elastixImageFilter.GetTransformParameterMap(
        )
        print("Done")
    return transform
Пример #4
0
    def transform(self, datasetIn, mode2d=False, maskMode=False):
        # the moving image (e.g. the mask) needs to have the slices flipped to be consistent
        if self.swapSlicesMoving:
            dataset = datasetIn[:, :, ::-1]
        else:
            dataset = datasetIn

        if maskMode:
            interp_order = 0
        else:
            interp_order = 3

        #print "Rotating 1"
        dataMovRotated = ndimage.rotate(dataset,
                                        self.rotationAngles[0],
                                        axes=(1, 2),
                                        order=interp_order)
        #print "Rotating 2"
        dataMovRotated = ndimage.rotate(dataMovRotated,
                                        self.rotationAngles[1],
                                        axes=(0, 2),
                                        order=interp_order)
        #print "Rotating 3"
        dataMovRotated = ndimage.rotate(dataMovRotated,
                                        self.rotationAngles[2],
                                        axes=(0, 1),
                                        order=interp_order)
        if not mode2d:
            dataMovExtended = ndimage.zoom(dataMovRotated,
                                           self.zoom,
                                           order=interp_order)
            dataMovShifted = ndimage.shift(dataMovExtended,
                                           self.shift,
                                           order=interp_order)
        else:
            #print("2D mode")
            dataMovExtended = ndimage.zoom(dataMovRotated,
                                           (self.zoom[0], self.zoom[1], 1),
                                           order=interp_order)
            dataMovShifted = ndimage.shift(
                dataMovExtended,
                (self.shift[0], self.shift[1], self.shift[2] / self.zoom[2]),
                order=interp_order)
            dataMovShifted = ndimage.zoom(dataMovShifted, (1, 1, self.zoom[2]),
                                          order=0)

        #dataMov2 = padorcut(dataMovShifted, self.endSize)
        dataMov2 = padorcut(dataMovShifted, np.array(self.endSize))
        if self.elastixTransform:
            # apply transformix
            transformixImageFilter = sitk.TransformixImageFilter()
            transformixImageFilter.SetLogToConsole(False)
            transformixImageFilter.SetLogToFile(False)
            if maskMode:
                for t in self.elastixTransform:
                    t['ResampleInterpolator'] = [
                        "FinalNearestNeighborInterpolator"
                    ]
            transformixImageFilter.SetTransformParameterMap(
                self.elastixTransform)
            transformixImageFilter.SetMovingImage(
                sitk.GetImageFromArray(dataMov2))
            transformixImageFilter.Execute()
            datasetOut = sitk.GetArrayFromImage(
                transformixImageFilter.GetResultImage())

        else:
            datasetOut = dataMov2
        #datasetOut = padorcut(datasetOut, self.endSize)

        # the original fixed image (i.e. the target of the alignment has the slices swapped, so swap back)
        if self.swapSlicesFix:
            datasetOut = datasetOut[:, :, ::-1]
        return datasetOut
Пример #5
0
def coscia_apply(modelObj: DynamicDLModel, data: dict):
    from dl.common.padorcut import padorcut
    import dl.common.biascorrection as biascorrection
    import dl.common.preprocess_train as pretrain
    from dl.common.preprocess_train import split_mirror
    from scipy.ndimage import zoom
    try:
        np
    except:
        import numpy as np

    from dl.labels.thigh import long_labels as LABELS_DICT

    MODEL_RESOLUTION = np.array([1.037037, 1.037037])
    MODEL_SIZE = (432, 432)
    MODEL_SIZE_SPLIT = (250, 250)
    netc = modelObj.model
    resolution = np.array(data['resolution'])
    zoomFactor = resolution / MODEL_RESOLUTION
    img = data['image']
    originalShape = img.shape
    img = zoom(img, zoomFactor)  # resample the image to the model resolution
    img = padorcut(img, MODEL_SIZE)
    imgbc = biascorrection.biascorrection_image(img)
    a1, a2, a3, a4, b1, b2 = split_mirror(imgbc)
    left = imgbc[int(b1):int(b2), int(a1):int(a2)]
    left = padorcut(left, MODEL_SIZE_SPLIT)
    right = imgbc[int(b1):int(b2), int(a3):int(a4)]
    right = right[::1, ::-1]
    right = padorcut(right, MODEL_SIZE_SPLIT)
    segmentationleft = netc.predict(
        np.expand_dims(np.stack([left, np.zeros(MODEL_SIZE_SPLIT)], axis=-1),
                       axis=0))
    labelleft = np.argmax(np.squeeze(segmentationleft[0, :, :, :13]), axis=2)
    segmentationright = netc.predict(
        np.expand_dims(np.stack([right, np.zeros(MODEL_SIZE_SPLIT)], axis=-1),
                       axis=0))
    labelright = np.argmax(np.squeeze(segmentationright[0, :, :, :13]), axis=2)
    labelright = labelright[::1, ::-1]
    labelsMask_left = np.zeros(MODEL_SIZE, dtype='float32')
    labelsMask_right = np.zeros(MODEL_SIZE, dtype='float32')
    labelsMask_left[int(b1):int(b2),
                    int(a1):int(a2)] = padorcut(labelleft, [b2 - b1, a2 - a1])
    labelsMask_right[int(b1):int(b2),
                     int(a3):int(a4)] = padorcut(labelright,
                                                 [b2 - b1, a4 - a3])
    labelsMask_left = zoom(labelsMask_left, 1 / zoomFactor, order=0)
    labelsMask_left = padorcut(labelsMask_left, originalShape).astype(np.int8)
    labelsMask_right = zoom(labelsMask_right, 1 / zoomFactor, order=0)
    labelsMask_right = padorcut(labelsMask_right,
                                originalShape).astype(np.int8)
    outputLabels = {}

    if data['split_laterality']:
        for labelValue, labelName in LABELS_DICT.items():
            outputLabels[labelName + '_R'] = (
                labelsMask_left == labelValue).astype(
                    np.int8)  # left in the image is right in the anatomy
            outputLabels[labelName +
                         '_L'] = (labelsMask_right == labelValue).astype(
                             np.int8)
        return outputLabels
    else:
        for labelValue, labelName in LABELS_DICT.items():
            outputLabels[labelName] = np.logical_or(
                labelsMask_left == labelValue,
                labelsMask_right == labelValue).astype(np.int8)
        return outputLabels
Пример #6
0
def gamba_apply(modelObj: DynamicDLModel, data: dict):
    from dl.common.padorcut import padorcut
    import dl.common.biascorrection as biascorrection
    import dl.common.preprocess_train as pretrain
    from dl.common.preprocess_train import split_mirror
    from scipy.ndimage import zoom
    try:
        np
    except:
        import numpy as np

    from dl.labels.leg import long_labels as LABELS_DICT
    
    MODEL_RESOLUTION = np.array([1.037037, 1.037037])
    MODEL_SIZE = (432, 432)
    MODEL_SIZE_SPLIT = (216, 216)

    classification = data.get('classification', '')

    single_side = False
    swap = False

    # Note: this is anatomical right, which means it's image left! It's the image right that is swapped
    if classification.lower().strip().endswith('right'):
        single_side = True
        swap = False
    elif classification.lower().strip().endswith('left'):
        single_side = True
        swap = True

    # otherwise: double sided

    netc = modelObj.model
    resolution = np.array(data['resolution'])
    zoomFactor = resolution / MODEL_RESOLUTION
    img = data['image']
    originalShape = img.shape
    img = zoom(img, zoomFactor)  # resample the image to the model resolution

    if single_side:
        img = padorcut(img, MODEL_SIZE_SPLIT)
        if swap:
            img = img[::1, ::-1]

        segmentation = netc.predict(np.expand_dims(np.stack([img, np.zeros(MODEL_SIZE_SPLIT)], axis=-1), axis=0))
        label = np.argmax(np.squeeze(segmentation[0, :, :, :13]), axis=2)
        if swap:
            label = label[::1, ::-1]

        labelsMask = zoom(label, 1 / zoomFactor, order=0)
        labelsMask = padorcut(labelsMask, originalShape).astype(np.int8)

        outputLabels = {}

        suffix = ''
        if data['split_laterality']:
            suffix = '_L' if swap else '_R'
        for labelValue, labelName in LABELS_DICT.items():
            outputLabels[labelName + suffix] = (labelsMask == labelValue).astype(
                np.int8)  # left in the image is right in the anatomy
        return outputLabels

    # two sides
    img = padorcut(img, MODEL_SIZE)
    imgbc=biascorrection.biascorrection_image(img)
    a1,a2,a3,a4,b1,b2=split_mirror(imgbc)
    left=imgbc[int(b1):int(b2),int(a1):int(a2)]
    left=padorcut(left, MODEL_SIZE_SPLIT)
    right=imgbc[int(b1):int(b2),int(a3):int(a4)]
    right=right[::1,::-1]
    right=padorcut(right, MODEL_SIZE_SPLIT)
    segmentationleft=netc.predict(np.expand_dims(np.stack([left,np.zeros(MODEL_SIZE_SPLIT)],axis=-1),axis=0))
    labelleft=np.argmax(np.squeeze(segmentationleft[0,:,:,:7]), axis=2)
    segmentationright=netc.predict(np.expand_dims(np.stack([right,np.zeros(MODEL_SIZE_SPLIT)],axis=-1),axis=0))
    labelright=np.argmax(np.squeeze(segmentationright[0,:,:,:7]), axis=2)
    labelright=labelright[::1,::-1]
    labelsMask_left=np.zeros(MODEL_SIZE,dtype='float32')
    labelsMask_right=np.zeros(MODEL_SIZE,dtype='float32')
    labelsMask_left[int(b1):int(b2),int(a1):int(a2)]=padorcut(labelleft, [b2-b1, a2-a1])
    labelsMask_right[int(b1):int(b2),int(a3):int(a4)]=padorcut(labelright, [b2-b1, a4-a3])
    labelsMask_left = zoom(labelsMask_left, 1/zoomFactor, order=0)
    labelsMask_left = padorcut(labelsMask_left, originalShape).astype(np.int8)
    labelsMask_right = zoom(labelsMask_right, 1/zoomFactor, order=0)
    labelsMask_right = padorcut(labelsMask_right, originalShape).astype(np.int8)
    outputLabels = {}

    if data['split_laterality']:
        for labelValue, labelName in LABELS_DICT.items():
            outputLabels[labelName+'_R'] = (labelsMask_left == labelValue).astype(np.int8)
            outputLabels[labelName+'_L'] = (labelsMask_right == labelValue).astype(np.int8)
        return outputLabels
    else:
        for labelValue, labelName in LABELS_DICT.items():
            outputLabels[labelName] = np.logical_or(labelsMask_left == labelValue, labelsMask_right == labelValue).astype(np.int8)
        return outputLabels