def main(config, results):

    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    ds = Dataset(config, tokenizer)
    label_names = ds.label_names
    model_config = tu.load_model_config(config)

    for i, (train_dataloader, (valid_dataloader, valid_df)) in enumerate(
            ds.get_train_valid_dataloaders(include_valid_df=True)):
        print(f"------------------ BEGIN ITER {i} -----------------------")
        model = tu.load_model(config, model_config)
        model.to(config.device)
        util.set_seed(config)

        run_name = f"fold{i}"

        experiment = Experiment(config,
                                model,
                                tokenizer,
                                label_names=label_names,
                                run_name=run_name,
                                results=results)
        global_step, tr_loss = experiment.train(
            train_dataloader, valid_dataloader=valid_dataloader)

        results = experiment.results
        # experiment.evaluate('valid', valid_dataloader)
        print(f"================== DONE ITER {i} =======================\n\n")

    return results
Пример #2
0
def main(config, results):

    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    ds = Dataset(config, tokenizer)
    label_names = ds.label_names

    dataloaders = getattr(ds, f"get_{config.dataset}_train_valid_dataloaders")(include_valid_df=True)

    for i, (train_dataloader, (valid_dataloader, valid_df)) in enumerate(dataloaders):
        print(f"------------------ BEGIN ITER {i} -----------------------")
        # need to reload original model config, to avoid vocabulary size mismatch
        # caused by custom tokens
        model_config = tu.load_model_config(config)
        model = tu.load_model(config, model_config)
        model.resize_token_embeddings(len(tokenizer))
        model.to(config.device)
        util.set_seed(config)

        run_name = f"fold{i}"

        experiment = Experiment(config, model, tokenizer, label_names=label_names, run_name=run_name, results=results)
        global_step, tr_loss = experiment.train(
            train_dataloader, valid_dataloader=valid_dataloader)

        results = experiment.results
        # experiment.evaluate('valid', valid_dataloader)
        print(f"================== DONE ITER {i} =======================\n\n")

    return results
Пример #3
0
def main(config, results):

    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    ds = Dataset(config, tokenizer)
    label_names = ds.label_names

    train_dataloader, valid_dataloader, test_dataloader = getattr(
        ds, f"get_{config.dataset}_train_valid_test_dataloaders")()

    model = tu.load_model(config, model_config)
    model.resize_token_embeddings(len(tokenizer))
    model.to(config.device)
    util.set_seed(config)

    experiment = Experiment(config,
                            model,
                            tokenizer,
                            label_names=label_names,
                            results=results)
    global_step, tr_loss = experiment.train(train_dataloader,
                                            valid_dataloader=valid_dataloader,
                                            test_dataloader=test_dataloader)

    results = experiment.results
    return results
def main(config, results):
    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    if config.clap:
        ds = ClapDataset(config, tokenizer)
    else:
        ds = Dataset(config, tokenizer)

    backtrans_dfs = []
    run_configs = RUN_CONFIGS[config.run_configs]

    # Do not use CV in this setting
    train_valid_df, test_df = train_test_split(ds.df,
                                               test_size=0.2,
                                               shuffle=True,
                                               stratify=ds.df.label_id,
                                               random_state=config.seed)

    results = active_learn(config,
                           model_config,
                           tokenizer,
                           results,
                           ds.label_names,
                           test_df,
                           train_valid_df,
                           backtrans_dfs,
                           ds.get_dataloader,
                           run_configs,
                           balance=True)
    return results
def main(config, results):
    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    ds = Dataset(config, tokenizer)
    label_names = ds.label_names

    train_dataloader, valid_dataloader = ds.get_train_valid_dataloaders()

    model = tu.load_model(config, model_config)
    model.to(config.device)
    util.set_seed(config)

    experiment = Experiment(config,
                            model,
                            tokenizer,
                            label_names=label_names,
                            results=results)
    global_step, tr_loss = experiment.train(train_dataloader,
                                            valid_dataloader=valid_dataloader)
    results = experiment.results

    experiment.save_model(util.models_path('comment_code_shuffle'))

    return results
Пример #6
0
def main(config, results):
    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    ds = SentiDataset(config, tokenizer)
    backtrans_dfs = ds.load_backtrans_dfs(ds.ALL_BACKTRANS_LANGS, 'train')
    run_configs = RUN_CONFIGS[config.run_configs]
    results = active_learn(config, model_config, tokenizer, results,
                           ds.label_names, ds.test_df, ds.train_valid_df,
                           backtrans_dfs, ds.get_dataloader, run_configs)
    return results
def main(config, results):
    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    if config.clap:
        ds = ClapDataset(config, tokenizer)
    else:
        ds = Dataset(config, tokenizer)

    label_names = ds.label_names
    model_config = tu.load_model_config(config)

    interp_out_file = Path(config.interp_out_file) if config.interp_out_file else None

    for i, (train_dataloader, (valid_dataloader, valid_df)) in enumerate(ds.get_train_valid_dataloaders(include_valid_df=True)):
        print(f"------------------ BEGIN ITER {i} -----------------------")
        model = tu.load_model(config, model_config)
        model.to(config.device)
        util.set_seed(config)

        run_name = f"fold{i}"

        experiment = Experiment(config, model, tokenizer, label_names=label_names, run_name=run_name, results=results)
        global_step, tr_loss = experiment.train(
            train_dataloader, valid_dataloader=valid_dataloader)


        if interp_out_file:
            interp_df = experiment.interpret(valid_dataloader, valid_df, label_names=label_names)
            with pd.option_context('display.max_rows', None, 'display.max_columns', None):
                print(interp_df)
            interp_df.to_csv(interp_out_file.with_name(f"{interp_out_file.name}_iter{i}"), index=False)

        results = experiment.results
        # experiment.evaluate('valid', valid_dataloader)
        print(f"================== DONE ITER {i} =======================\n\n")

    return results
def main(config, results):
    pd.set_option('display.max_rows', None)

    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    ds = SentiDataset(config, tokenizer)
    test_dataloader = ds.get_test_dataloader()

    model = tu.load_model(config, model_config)
    model.to(config.device)
    util.set_seed(config)

    train_dataloader, valid_dataloader = ds.get_train_valid_dataloaders()
    test_dataloader = ds.get_test_dataloader()

    test_dataloaders = {'test': ds.get_test_dataloader()}

    if config.jira:
        test_dataloaders['JIRA'] = (
            ds.get_jira_dataloader(),
            dict(pred_label_ids_func=ds.neutral_to_negative))

    if config.app_reviews:
        test_dataloaders['AppReviews'] = ds.get_app_reviews_dataloader()

    if config.sentidata_so:
        test_dataloaders[
            'StackOverflow (SentiData)'] = ds.get_stack_overflow_dataloader()

    experiment = Experiment(config,
                            model,
                            tokenizer,
                            label_names=ds.label_names,
                            results=results)
    global_step, tr_loss = experiment.train(train_dataloader,
                                            valid_dataloader=valid_dataloader,
                                            test_dataloader=test_dataloaders)

    # interp_df = experiment.interpret(test_dataloader, ds.test_df, label_names=ds.label_names)
    # with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    #     print(interp_df)

    # if config.interp_out_file:
    #     interp_df.to_csv(config.interp_out_file, index=False)

    return experiment.results
def main(config, results):
    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    ds = Dataset(config, tokenizer)
    label_names = ds.label_names

    train_dataloader = ds.get_train_dataloader()
    fake_valid_dataloader = ds.get_fake_valid_dataloader()

    # with config:
    #     config.max_steps=100

    model = tu.load_model(config, model_config)
    model.to(config.device)
    util.set_seed(config)

    experiment = Experiment(config, model, tokenizer, label_names=label_names, results=results)
    global_step, tr_loss = experiment.train(train_dataloader, valid_dataloader=fake_valid_dataloader) #test_dataloader=test_dataloader)

    valid_dataloader = ds.get_valid_dataloader()
    test_dataloader = ds.get_test_dataloader()
    experiment.evaluate('test_final', test_dataloader)
    experiment.evaluate('valid_final', valid_dataloader)
    experiment.save_model('test_model_complexity')

    with config:
        config.model_path = 'test_model_complexity' 
    model = tu.load_model(config, model_config)
    model.to(config.device)
    logger.warn('#################################### =========================')
    experiment = Experiment(config, model, tokenizer, label_names=label_names, results=results)
    experiment.evaluate('test_final_reloaded', test_dataloader)
    experiment.evaluate('valid_final_reloaded', valid_dataloader)



    results = experiment.results
    
    return results
def main(config, results):
    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    ds = Dataset(config, tokenizer)
    label_names = ds.label_names

    train_dataloader, valid_dataloader = ds.get_train_valid_dataloaders()
    test_dataloader = ds.get_test_dataloader()

    # with config:
    #     config.max_steps=100

    model = tu.load_model(config, model_config)
    model.to(config.device)
    util.set_seed(config)

    experiment = Experiment(config, model, tokenizer, label_names=label_names, results=results)
    global_step, tr_loss = experiment.train(train_dataloader, valid_dataloader=valid_dataloader, test_dataloader=test_dataloader)

    results = experiment.results
    
    return results
Пример #11
0
def main():
    config = get_config(parse_args)
    util.set_seed(config)

    with config:
        config.logging_steps = 50
        config.train_epochs = 5

    # config.train_head_only = True

    print("model is now", config.model_path)
    ds = CadoDataset(config)
    label_names = ds.label_names

    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)

    f1s = []
    results = None

    test_dataloader = ds.get_test_dataloader(tokenizer)

    for i, (train_dataloader, (valid_dataloader, valid_df)) in enumerate(ds.get_all_train_valid_dataloaders(tokenizer, include_valid_df=True)):
        print(f"------------------ BEGIN ITER {i} -----------------------")
        model = tu.load_model(config, model_config)
        model.to(config.device)
        util.set_seed(config)

        run_name = f"{config.single_class if config.single_class else 'multi'}_{i}"

        experiment = Experiment(config, model, tokenizer, label_names=label_names, run_name=run_name, results=results)
        global_step, tr_loss = experiment.train(
            train_dataloader, valid_dataloader=valid_dataloader, test_dataloader=test_dataloader)

        results = experiment.results
        # experiment.evaluate('valid', valid_dataloader)
        print(f"================== DONE ITER {i} =======================\n\n")
Пример #12
0
def main(config, results):

    logger.warning('Unclassified threshold: %s', config.self_train_thresh)

    ds = TDDataset(config,
                   binary=True,
                   self_train_thresh=config.self_train_thresh,
                   keyword_masking_frac=config.keyword_masking_frac)

    model_config = tu.load_model_config(config)
    tokenizer = tu.load_tokenizer(config, model_config)
    label_names = ds.label_names

    #project_name = 'emf-2.4.1'
    project_name = config.single_project

    iter_obj = [
        (project_name, *ds.get_train_valid_dataloaders(
            tokenizer, project_name, include_valid_df=True))
    ] if project_name else ds.get_fold_dataloaders(tokenizer,
                                                   include_valid_df=True)

    interp_out_file = Path(
        config.interp_out_file) if config.interp_out_file else None

    # for train_dataloader, valid_dataloader in [ds.get_train_valid_dataloaders(tokenizer, project_name)]:
    for project_name, train_dataloader, (valid_dataloader,
                                         valid_df) in iter_obj:
        print(
            f"------------------ BEGIN PROJECT {project_name} -----------------------"
        )

        model = tu.load_model(config, model_config)
        model.to(config.device)
        util.set_seed(config)

        experiment = Experiment(config,
                                model,
                                tokenizer,
                                label_names=label_names,
                                run_name=project_name,
                                results=results)
        global_step, tr_loss = experiment.train(
            train_dataloader, valid_dataloader=valid_dataloader)

        if interp_out_file:
            interp_df = experiment.interpret(valid_dataloader, valid_df)
            with pd.option_context('display.max_rows', None,
                                   'display.max_columns', None):
                print(interp_df)
            interp_df.to_csv(interp_out_file.with_name(
                f"{project_name}_{interp_out_file.name}"),
                             index=False)

        results = experiment.results

        # experiment.evaluate('valid', valid_dataloader)

        print(
            f"================== DONE PROJECT {project_name} =======================\n\n"
        )
    return results