Пример #1
0
def mains(t):
    X_train, y_train, X_test = t[0], t[1], t[2]
    data_dim = X_train.shape[1]

    logging.info("X_Train: %s" % (X_train))
    logging.info("Y_Train: %s" % (y_train))
    logging.info("X_test: %s" % (X_test))
    idx_test = 0
    tot_iter = 1
    y_predTotal = np.array([])

    # score= mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   linear svr result: %f_%f" %(score, mae_score))

    y_predTotal = np.array([])
    idx_test = 0

    idx_test = idx_test+1
    NUM_ESTIMATOR = 50
    NUM_PREEPOCH = 150
    NUM_BPEPOCH = 175
    BATH_SIZE = 50
   
    # score = mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   denoise ae result: %f_%f" %(score, mae_score))
    # rbf using sigmoid function, feature should be scaled to -1 and 1





    # score = mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   bi-lstm result: %f_%f" %(score, mae_score))
    # LSTM
    features_set = X_train
    test_features = X_test

    features_set = np.reshape(features_set, (features_set.shape[0], features_set.shape[1], 1))
    test_features = np.reshape(test_features, (test_features.shape[0], test_features.shape[1], 1))

    LSTM = build_LSTM(features_set, data_dim)
    LSTM.fit(features_set, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
    y_pred = LSTM.predict(test_features)
def mains(t):
    (X_train, y_train, X_test, Y_test) = (t[0], t[1], t[2], t[3])
    X_train= np.reshape(t[0], (-1, 1))
    X_test =np.reshape(t[2], (-1, 1))
    data_dim = X_train.shape[1]
    idx_test = 0
    tot_iter = 1
    plt.plot(list(range(0, len(Y_test.flatten()))), Y_test.flatten(),
             color='Black', linewidth=2, label='Actual')

    y_predTotal = np.array([])
    for time in range(tot_iter):
        idx_test = idx_test + 1
        X_train_plot = np.mean(X_train, axis=1).flatten()
        X_test_plot = np.mean(X_test, axis=1).flatten()
        linear_svr = build_SVR('linear', 1000)
        print(X_train)
        print(X_test)
        print(y_train)
        print(Y_test)

        linear_svr.fit(X_train, y_train)
        y_pred = linear_svr.predict(X_test)

        y_pred.reshape(1, X_test.shape[0])

        # logging.info(" %f  linear predicted result: %s" %(idx_test, y_pred))

        if y_predTotal.shape[0] < 1:
            y_predTotal = y_pred
        else:
            y_predTotal = np.append(y_predTotal, y_pred, axis=0)

        # plt.scatter(y_train, y_train, color='blue')
        # plt.show()
    # plt.plot(X_train, y_train,  color='red', linewidth=2)
    # plt.plot(X_test, y_predTotal.flatten(), color='blue', linewidth=2,label='linear')

    plt.plot(list(range(0, len(y_predTotal.flatten()))),
             y_predTotal.flatten(), color='blue', linewidth=2,
             label='linear')
    plt.legend()

    # plt.savefig('images/linear.png')

    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))

    # logging.info("  linears   result: %s" % (y_predTotal))

    logging.info('  linears predicted mean result: %s'
                 % y_predTotal.mean(axis=0))

    # score= mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   linear svr result: %f_%f" %(score, mae_score))

    y_predTotal = np.array([])
    idx_test = 0
    for time in range(tot_iter):
        idx_test = idx_test + 1
        NUM_ESTIMATOR = 50
        NUM_PREEPOCH = 150
        NUM_BPEPOCH = 175
        BATH_SIZE = 50
        rf = build_RF(NUM_ESTIMATOR)
        rf.fit(X_train, y_train)
        y_pred = rf.predict(X_test)
        y_pred.reshape(1, X_test.shape[0])

        # logging.info(" r fores  predict  result: %s" %(y_pred))

        if y_predTotal.shape[0] < 1:
            y_predTotal = y_pred
        else:
            y_predTotal = np.append(y_predTotal, y_pred, axis=0)
    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))

    # plt.scatter(y_train, y_train, color='blue')
    # plt.show()

    # plt.clf()
    # plt.plot(X_train, y_train,  color='red', linewidth=2)
    # plt.plot(X_test, y_predTotal.flatten(), color='blue', linewidth=2)

    plt.plot(list(range(0, len(y_predTotal.flatten()))),
             y_predTotal.flatten(), color='red', linewidth=2,
             label='random forest')
    plt.legend()
    t1=list(range(0, len(y_predTotal.flatten())))
    t2=y_predTotal.flatten()
    t=[]
    for a in t1:
        for b in t2:
            t.append((a,b))

    # plt.savefig('images/rforest.png')

    logging.info('  r fore predicted mean result: %s'
                 % y_predTotal.mean(axis=0))
    savetxt('dataRF.csv', t, delimiter=',') 
    # score= mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   randomforest  result: %f_%f" %(score, mae_score))
    # neural network

    y_predTotal = np.array([])
    idx_test = 0
    for time in range(tot_iter):
        idx_test = idx_test + 1
        nn_model = build_NN(data_dim)
        sc = StandardScaler()
        nn_model.fit(X_train, y_train, epochs=50, batch_size=BATH_SIZE)
        y_pred = nn_model.predict(X_test)
        y_predact = y_pred
        y_pred.reshape(1, X_test.shape[0])

        # logging.info(" neu  predict  result: %s" %(y_pred))

        if y_predTotal.shape[0] < 1:
            y_predTotal = y_predact
        else:
            y_predTotal = np.append(y_predTotal, y_predact, axis=0)
    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))

    # plt.clf()
    # plt.plot(X_train, y_train,  color='red', linewidth=2)
    # plt.plot(X_test, y_predTotal.flatten(), color='green', linewidth=2)

    plt.plot(list(range(0, len(y_predTotal.flatten()))),
             y_predTotal.flatten(), color='green', linewidth=2,
             label='Neural')
    plt.legend()

    # plt.savefig('images/neural.png')

    logging.info('  neu predicted mean result: %s'
                 % y_predTotal.mean(axis=0))

    idx_test = 0
    y_predTotal = np.array([])
    for time in range(tot_iter):
        idx_test = idx_test + 1

        normal_AE = build_pre_normalAE(data_dim, X_train,
                epoch_pretrain=NUM_PREEPOCH, hidDim=[140, 280])
        normal_AE.fit(X_train, y_train, epochs=NUM_BPEPOCH,
                      batch_size=BATH_SIZE)
        y_pred = normal_AE.predict(X_test)
        y_pred.reshape(1, X_test.shape[0])

        # logging.info(" ae  predict  result: %s" %(y_pred))

        if y_predTotal.shape[0] < 1:
            y_predTotal = y_pred
        else:
            y_predTotal = np.append(y_predTotal, y_pred, axis=0)
    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))

    # plt.clf()
    # plt.plot(X_train, y_train,  color='red', linewidth=2)
    # plt.plot(X_test, y_predTotal.flatten(), color='red',  label='AE')

    plt.plot(list(range(0, len(y_predTotal.flatten()))),
             y_predTotal.flatten(), color='red', linewidth=2,
             label='auto encoder')
    plt.legend()

    # plt.savefig('images/ae.png')

    logging.info('  ae predicted mean result: %s'
                 % y_predTotal.mean(axis=0))

    # score = mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   normal ae result: %f_%f" %(score, mae_score))
    # denoise AE

    idx_test = 0
    y_predTotal = np.array([])
    for time in range(tot_iter):
        idx_test = idx_test + 1
        denois_AE = build_pre_denoiseAE(data_dim, X_train,
                epoch_pretrain=NUM_PREEPOCH, hidDim=[140, 280])
        denois_AE.fit(X_train, y_train, epochs=NUM_BPEPOCH,
                      batch_size=BATH_SIZE)
        y_pred = denois_AE.predict(X_test)
        y_pred.reshape(1, X_test.shape[0])

        # logging.info(" denoiseae  predict  result: %s" %(y_pred))

        if y_predTotal.shape[0] < 1:
            y_predTotal = y_pred
        else:
            y_predTotal = np.append(y_predTotal, y_pred, axis=0)
    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))

    # plt.clf()
    # plt.plot(X_train, y_train,  color='red', linewidth=2)
    # plt.plot(X_test, y_predTotal.flatten(), color='cyan', linewidth=2)

    plt.plot(list(range(0, len(y_predTotal.flatten()))),
             y_predTotal.flatten(), color='cyan', linewidth=2,
             label='Denoise AE')
    plt.legend()

    # plt.savefig('images/denoiseAE.png')

    logging.info('  denoiseae predicted mean result: %s'
                 % y_predTotal.mean(axis=0))

    # score = mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   denoise ae result: %f_%f" %(score, mae_score))
    # rbf using sigmoid function, feature should be scaled to -1 and 1

    idx_test = 0

    for time in range(tot_iter):
        idx_test = idx_test + 1

        scaler = MinMaxScaler()
        X_train_rbm = scaler.fit_transform(X_train)
        rbm = build_RBM(NUM_BPEPOCH, NUM_PREEPOCH, batch_size=BATH_SIZE)
        rbm.fit(X_train_rbm, y_train)
        X_test_rbm = scaler.transform(X_test)
        y_pred = rbm.predict(X_test_rbm)
        y_predTotal = np.reshape(y_pred, (tot_iter, X_test.shape[0]))
        logging.info('  dbn predict  result: %s' % y_pred)

    plt.plot(list(range(0, len(y_predTotal.flatten()))),
             y_predTotal.flatten(), color='#808000', linewidth=2,
             label='dbn')
    plt.legend()
    
        # plt.plot(X_test, y_predTotal.flatten(), color='magenta', linewidth=2)
        # plt.savefig('images/biLSTM.png')

        # score = mean_squared_error(y_pred, y_test)
        # mae_score = mean_absolute_error(y_pred, y_test)
        # logging.info("   dbn result: %f_%f" %(score, mae_score))
        # Bi-directional LSTM
        # t = load_data(False)

    X_train_init = X_train
    X_test_init = X_test

    # X_train = np.reshape(X_train, ( 1,X_train.shape[1],X_train.shape[0]))

    data_dim = X_train.shape[1]
    X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
    X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
    timesteps = 1
   
    #data_dim = X_train.shape[2]
    #timesteps = X_train.shape[0]

    biLSTM = build_BILSTM(timesteps, data_dim)
    biLSTM.fit(X_train, y_train, epochs=NUM_BPEPOCH,
               batch_size=BATH_SIZE)
    y_pred = biLSTM.predict(X_test)

    y_predTotal = np.reshape(y_pred, (tot_iter, X_test.shape[0]))
    logging.info('predicted BILSTM mean result: %s'
                 % y_predTotal.mean(axis=0))

    # plt.clf()
    # plt.plot(X_train, y_train,  color='red', linewidth=2)

    plt.plot(list(range(0, len(y_predTotal.flatten()))),
             y_predTotal.flatten(), color='yellow', linewidth=2,
             label='BILSTM')
    plt.legend()
    

    # plt.plot(X_test, y_predTotal.flatten(), color='magenta', linewidth=2)
    # plt.savefig('images/biLSTM.png')

    # score = mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   bi-lstm result: %f_%f" %(score, mae_score))
    # LSTM
    
    LSTM = build_LSTM(timesteps, data_dim)
    LSTM.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
    y_pred = LSTM.predict(X_test)

    # score = mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)

    y_predTotal = np.reshape(y_pred, (tot_iter, X_test.shape[0]))
    logging.info('predicted mean result: %s' % y_predTotal.mean(axis=0))

    # plt.clf()
    # plt.plot(X_train_plot, y_train,  color='red', linewidth=2)
    # plt.plot(X_test_plot, y_predTotal.flatten(), color='blue', linewidth=2)

    plt.plot(list(range(0, len(y_predTotal.flatten()))),
             y_predTotal.flatten(), color='blue', linewidth=2,
             label='LSTM')
    plt.legend()
    
    # plt.savefig('images/LSTM.png')

    # CNN
    X_train = X_train_init
    X_test = X_test_init 

    X_train = X_train.reshape(50, 1, 1)
    X_test = X_test.reshape(25, 1, 1)

    CNN = build_CNN(1, 1)
    CNN.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
    y_pred = CNN.predict(X_test)
    savetxt('dataLSTM.csv', y_predTotal, delimiter=',')

 
    #plt.clf()
    #plt.plot(X_train_plot, y_train, color='red', linewidth=2)
    #plt.plot(X_test_plot, y_pred.flatten(), color='blue', linewidth=2)
    y_predTotal = np.reshape(y_pred, (tot_iter, X_test.shape[0]))
    logging.info('predicted mean result: %s' % y_predTotal.mean(axis=0))
    #
    plt.clf()
    y_predTotal = preprocessing.normalize(y_predTotal)
    plt.plot(list(range(0, len(y_predTotal.flatten()))),
             y_predTotal.flatten(), color='green', linewidth=2,
             label='CNN')
    plt.legend()
    plt.savefig('images/combo.png')
    savetxt('dataCNN.csv', y_predTotal, delimiter=',')
Пример #3
0
def mains(t):
    X_train, y_train, X_test, Y_test = t[0], t[1], t[2],t[3]
    data_dim = X_train.shape[1]

    #logging.info("X_Train: %s" % (X_train))
    #logging.info("Y_Train: %s" % (y_train))
    #logging.info("X_test: %s" % (X_test))
    idx_test = 0
    tot_iter = 1
    plt.plot(list(range(0,len(Y_test.flatten()))), Y_test.flatten(), color='Black', linewidth=2,label='Actual')

    y_predTotal = np.array([])
    for time in range(tot_iter):
        idx_test = idx_test+1

        # t = load_data(True)

        """
		linear_regression=build_LN()
		linear_regression.fit(X_train,y_train)
		y_pred = linear_regression.predict(X_test)
		logging.info("   linear predicted result: %s" %(y_pred))
		"""
        X_train_plot = np.mean(X_train, axis = 1).flatten()
        X_test_plot =np.mean(X_test, axis = 1).flatten()
        print("plot")
        print(X_train_plot)
        print(X_test_plot)
        print(y_train)
        linear_svr = build_SVR('linear', 1000)

        linear_svr.fit(X_train, y_train)
        y_pred = linear_svr.predict(X_test)

        y_pred.reshape(1, X_test.shape[0])
        # logging.info(" %f  linear predicted result: %s" %(idx_test, y_pred))

        if (y_predTotal.shape[0] < 1):
            y_predTotal = y_pred
        else:
            y_predTotal = np.append(y_predTotal, y_pred, axis=0)
        # plt.scatter(y_train, y_train, color='blue')
        # plt.show()

    print(X_train.shape)
    print(X_test.shape)
    print(y_train.shape)
    print(y_predTotal.flatten())
    
    #plt.plot(X_train, y_train,  color='red', linewidth=2)
    #plt.plot(X_test, y_predTotal.flatten(), color='blue', linewidth=2,label='linear')
    plt.plot(list(range(0,len(y_predTotal.flatten()))), y_predTotal.flatten(), color='blue', linewidth=2,label='linear')
    plt.legend()
    #plt.savefig('images/linear.png')
    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))
    #logging.info("  linears   result: %s" % (y_predTotal))

    logging.info("  linears predicted mean result: %s" %
                 (y_predTotal.mean(axis=0)))

    # score= mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   linear svr result: %f_%f" %(score, mae_score))

    y_predTotal = np.array([])
    idx_test = 0
    for time in range(tot_iter):
        idx_test = idx_test+1
        NUM_ESTIMATOR = 50
        NUM_PREEPOCH = 150
        NUM_BPEPOCH = 175
        BATH_SIZE = 50
        rf = build_RF(NUM_ESTIMATOR)
        rf.fit(X_train, y_train)
        y_pred = rf.predict(X_test)
        y_pred.reshape(1, X_test.shape[0])
        # logging.info(" r fores  predict  result: %s" %(y_pred))
        if (y_predTotal.shape[0] < 1):
            y_predTotal = y_pred
        else:
            y_predTotal = np.append(y_predTotal, y_pred, axis=0)
    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))
    # plt.scatter(y_train, y_train, color='blue')
    # plt.show()

    #plt.clf()
    #plt.plot(X_train, y_train,  color='red', linewidth=2)
    #plt.plot(X_test, y_predTotal.flatten(), color='blue', linewidth=2)
    plt.plot(list(range(0,len(y_predTotal.flatten()))), y_predTotal.flatten(), color='red', linewidth=2,label='random forest')
    plt.legend()
    #plt.savefig('images/rforest.png')

    logging.info("  r fore predicted mean result: %s" %
                 (y_predTotal.mean(axis=0)))

    # score= mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   randomforest  result: %f_%f" %(score, mae_score))
    # neural network
    y_predTotal = np.array([])
    idx_test = 0
    for time in range(tot_iter):
        idx_test = idx_test+1
        nn_model = build_NN(data_dim)
        sc = StandardScaler()

        #train_sc = sc.fit_transform(X_train)
        #test_sc = sc.transform(X_test)
        #logging.info("X_Train: %s" %(np.percentile(X_train)))
        nn_model.fit(X_train, y_train, epochs=50,batch_size=BATH_SIZE)
        y_pred = nn_model.predict(X_test)
        #y_predact = sc.inverse_transform(y_pred)
        y_predact = y_pred
        y_pred.reshape(1, X_test.shape[0])
        # logging.info(" neu  predict  result: %s" %(y_pred))

        if (y_predTotal.shape[0] < 1):
            y_predTotal = y_predact
        else:
            y_predTotal = np.append(y_predTotal, y_predact, axis=0)
    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))

    #plt.clf()
    #plt.plot(X_train, y_train,  color='red', linewidth=2)
    #plt.plot(X_test, y_predTotal.flatten(), color='green', linewidth=2)
    plt.plot(list(range(0,len(y_predTotal.flatten()))), y_predTotal.flatten(), color='green', linewidth=2,label='Neural')
    plt.legend()
    #plt.savefig('images/neural.png')
    logging.info("  neu predicted mean result: %s" %
                 (y_predTotal.mean(axis=0)))

    idx_test = 0
    y_predTotal = np.array([])
    for time in range(tot_iter):
        idx_test = idx_test+1

        normal_AE = build_pre_normalAE(
            data_dim, X_train, epoch_pretrain=NUM_PREEPOCH, hidDim=[140, 280])
        normal_AE.fit(X_train, y_train, epochs=NUM_BPEPOCH,
                      batch_size=BATH_SIZE)
        y_pred = normal_AE.predict(X_test)
        y_pred.reshape(1, X_test.shape[0])
        # logging.info(" ae  predict  result: %s" %(y_pred))

        if (y_predTotal.shape[0] < 1):
            y_predTotal = y_pred
        else:
            y_predTotal = np.append(y_predTotal, y_pred, axis=0)
    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))

    #plt.clf()
    #plt.plot(X_train, y_train,  color='red', linewidth=2)
    #plt.plot(X_test, y_predTotal.flatten(), color='red',  label='AE')
    plt.plot(list(range(0,len(y_predTotal.flatten()))), y_predTotal.flatten(), color='yellow', linewidth=2,label='auto encoder')
    plt.legend()
    #plt.savefig('images/ae.png')

    logging.info("  ae predicted mean result: %s" % (y_predTotal.mean(axis=0)))
    # score = mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   normal ae result: %f_%f" %(score, mae_score))
    # denoise AE

    idx_test = 0
    y_predTotal = np.array([])
    for time in range(tot_iter):
        idx_test = idx_test+1
        denois_AE = build_pre_denoiseAE(
            data_dim, X_train, epoch_pretrain=NUM_PREEPOCH, hidDim=[140, 280])
        denois_AE.fit(X_train, y_train, epochs=NUM_BPEPOCH,
                      batch_size=BATH_SIZE)
        y_pred = denois_AE.predict(X_test)
        y_pred.reshape(1, X_test.shape[0])
        # logging.info(" denoiseae  predict  result: %s" %(y_pred))

        if (y_predTotal.shape[0] < 1):
            y_predTotal = y_pred
        else:
            y_predTotal = np.append(y_predTotal, y_pred, axis=0)
    y_predTotal = np.reshape(y_predTotal, (tot_iter, X_test.shape[0]))

    #plt.clf()
    #plt.plot(X_train, y_train,  color='red', linewidth=2)
    #plt.plot(X_test, y_predTotal.flatten(), color='cyan', linewidth=2)
    plt.plot(list(range(0,len(y_predTotal.flatten()))), y_predTotal.flatten(), color='cyan', linewidth=2,label='Denoise AE')
    plt.legend()
    #plt.savefig('images/denoiseAE.png')

    logging.info("  denoiseae predicted mean result: %s" %
                 (y_predTotal.mean(axis=0)))

    # score = mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   denoise ae result: %f_%f" %(score, mae_score))
    # rbf using sigmoid function, feature should be scaled to -1 and 1

    idx_test = 0

    for time in range(tot_iter):
        idx_test = idx_test+1

        scaler = MinMaxScaler()
        X_train_rbm = scaler.fit_transform(X_train)
        rbm = build_RBM(NUM_BPEPOCH, NUM_PREEPOCH, batch_size=BATH_SIZE)
        rbm.fit(X_train_rbm, y_train)
        X_test_rbm = scaler.transform(X_test)
        y_pred = rbm.predict(X_test_rbm)
        y_predTotal = np.reshape(y_pred, (tot_iter, X_test.shape[0]))
        logging.info("  dbn predict  result: %s" % (y_pred))

    plt.plot(list(range(0,len(y_predTotal.flatten()))), y_predTotal.flatten(), color = '#808000', linewidth=2,label='dbn')
    plt.legend()
    plt.savefig('images/Combined')
        #plt.plot(X_test, y_predTotal.flatten(), color='magenta', linewidth=2)
        #plt.savefig('images/biLSTM.png')

        # score = mean_squared_error(y_pred, y_test)
        # mae_score = mean_absolute_error(y_pred, y_test)
        # logging.info("   dbn result: %f_%f" %(score, mae_score))
        # Bi-directional LSTM
        # t = load_data(False)
    
    X_train_init = X_train
    X_test_init = X_test
    #X_train = np.reshape(X_train, ( 1,X_train.shape[1],X_train.shape[0]))
    X_test = np.reshape(X_test, (1,X_test.shape[1], X_test.shape[0]))
    print (X_train)
    print(X_test)
    data_dim = X_train.shape[2]
    timesteps = X_train.shape[0]

    biLSTM = build_BILSTM(timesteps, data_dim)
    biLSTM.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
    y_pred = biLSTM.predict(X_test)

    y_predTotal = np.reshape(y_pred, (tot_iter, X_test.shape[0]))
    logging.info("predicted BILSTM mean result: %s" %
                 (y_predTotal.mean(axis=0)))
    #plt.clf()
    #plt.plot(X_train, y_train,  color='red', linewidth=2)
    plt.plot(list(range(0,len(y_predTotal.flatten()))), y_predTotal.flatten(), color='yellow', linewidth=2,label='BILSTM')
    plt.legend()
    #plt.plot(X_test, y_predTotal.flatten(), color='magenta', linewidth=2)
    #plt.savefig('images/biLSTM.png')



    # score = mean_squared_error(y_pred, y_test)
    # mae_score = mean_absolute_error(y_pred, y_test)
    # logging.info("   bi-lstm result: %f_%f" %(score, mae_score))
    # LSTM
    LSTM = build_LSTM(timesteps, data_dim)
    LSTM.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
    y_pred = LSTM.predict(X_test)

                 
    #score = mean_squared_error(y_pred, y_test)
    #mae_score = mean_absolute_error(y_pred, y_test)
    y_predTotal = np.reshape(y_pred, (tot_iter, X_test.shape[0]))
    logging.info("predicted mean result: %s" %
                 (y_predTotal.mean(axis=0)))
    #plt.clf()
    #plt.plot(X_train_plot, y_train,  color='red', linewidth=2)
    #plt.plot(X_test_plot, y_predTotal.flatten(), color='blue', linewidth=2)
    plt.plot(list(range(0,len(y_predTotal.flatten()))), y_predTotal.flatten(), color='blue', linewidth=2,label='LSTM')
    plt.legend()

    #plt.savefig('images/LSTM.png')

    # CNN
    CNN = build_CNN(timesteps, data_dim)
    CNN.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
    y_pred = CNN.predict(X_test)
    
    plt.clf()
    plt.plot(X_train_plot, y_train,  color='red', linewidth=2)
    plt.plot(X_test_plot, y_pred.flatten(), color='blue', linewidth=2)
    plt.savefig('CNN.png')
def mains(t):
	X_train, y_train, X_test = t[0], t[1], t[2]
	data_dim = X_train.shape[1]
	
	logging.info("X_Train: %s" %(X_train))
	logging.info("Y_Train: %s" %(y_train))
	logging.info("X_test: %s" %(X_test))
	idx_test=0
	tot_iter = 1
	y_predTotal=np.array([])
	for time in range(tot_iter):
		idx_test = idx_test+1
		
		#t = load_data(True)
		
	
		""" 
		linear_regression=build_LN()
		linear_regression.fit(X_train,y_train)
		y_pred = linear_regression.predict(X_test)
		logging.info("   linear predicted result: %s" %(y_pred))
		"""
		X_train_plot = X_train.flatten()
		X_test_plot = X_test.flatten()

    	
		
		
		linear_svr = build_SVR('linear',1000)
		
		
		linear_svr.fit(X_train, y_train)
		y_pred = linear_svr.predict(X_test)
		
		y_pred.reshape(1,X_test.shape[0])
		#logging.info(" %f  linear predicted result: %s" %(idx_test, y_pred))

		if (y_predTotal.shape[0] < 1):
			y_predTotal = y_pred
		else:
			y_predTotal = np.append(y_predTotal,y_pred,axis=0)
		#plt.scatter(y_train, y_train, color='blue')
		#plt.show()
	
	print(X_train.shape)
	print(X_test.shape)	
	print(y_train.shape)
	print(y_predTotal.flatten())
	plt.plot( X_train_plot, y_train,  color='red', linewidth=2)
	plt.plot( X_test, y_predTotal.flatten(), color='blue', linewidth=2)
	plt.savefig('linear.png')
	y_predTotal= np.reshape(y_predTotal,(tot_iter,X_test.shape[0]))
	logging.info("  linears   result: %s" %(y_predTotal))
	

	logging.info("  linears predicted mean result: %s" %(y_predTotal.mean(axis=0)))	
	
	
	
		#score= mean_squared_error(y_pred, y_test)
		#mae_score = mean_absolute_error(y_pred, y_test)
		#logging.info("   linear svr result: %f_%f" %(score, mae_score))
	
	
	
	
	
	y_predTotal=np.array([])
	idx_test = 0
	for time in range(tot_iter):
		idx_test = idx_test+1
		NUM_ESTIMATOR = 50		
		NUM_PREEPOCH = 150
		NUM_BPEPOCH = 175
		BATH_SIZE = 50
		rf = build_RF(NUM_ESTIMATOR)
		rf.fit(X_train, y_train)
		y_pred = rf.predict(X_test)
		y_pred.reshape(1,X_test.shape[0])
		#logging.info(" r fores  predict  result: %s" %(y_pred))
		if (y_predTotal.shape[0] < 1):
			y_predTotal = y_pred
		else:
			y_predTotal = np.append(y_predTotal,y_pred,axis=0)
	y_predTotal= np.reshape(y_predTotal,(tot_iter,X_test.shape[0]))
		#plt.scatter(y_train, y_train, color='blue')
		#plt.show()
		
	plt.clf()
	plt.plot( X_train_plot, y_train,  color='red', linewidth=2)
	plt.plot( X_test, y_predTotal.flatten(), color='blue', linewidth=2)
	plt.savefig('rforest.png')
	
	logging.info("  r fore predicted mean result: %s" %(y_predTotal.mean(axis=0)))	

		#score= mean_squared_error(y_pred, y_test)
		#mae_score = mean_absolute_error(y_pred, y_test)
		#logging.info("   randomforest  result: %f_%f" %(score, mae_score))
		#neural network
	y_predTotal=np.array([])
	idx_test = 0
	for time in range(tot_iter):
		idx_test = idx_test+1
		
		nn_model = build_NN(data_dim)
		nn_model.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
		y_pred = nn_model.predict(X_test)
		
		y_pred.reshape(1,X_test.shape[0])
		#logging.info(" neu  predict  result: %s" %(y_pred))

		if (y_predTotal.shape[0] < 1):
			y_predTotal = y_pred
		else:
			y_predTotal = np.append(y_predTotal,y_pred,axis=0)
	y_predTotal= np.reshape(y_predTotal,(tot_iter,X_test.shape[0]))

	plt.clf()
	plt.plot( X_train_plot, y_train,  color='red', linewidth=2)
	plt.plot( X_test, y_predTotal.flatten(), color='blue', linewidth=2)
	plt.savefig('neural.png')  
	logging.info("  neu predicted mean result: %s" %(y_predTotal.mean(axis=0)))
		
	idx_test = 0
	y_predTotal=np.array([])
	for time in range(tot_iter):
		idx_test = idx_test+1
		
		normal_AE = build_pre_normalAE(data_dim, X_train, epoch_pretrain=NUM_PREEPOCH, hidDim=[140,280])
		normal_AE.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
		y_pred = normal_AE.predict(X_test)
		y_pred.reshape(1,X_test.shape[0])
		#logging.info(" ae  predict  result: %s" %(y_pred))

		if (y_predTotal.shape[0] < 1):
			y_predTotal = y_pred
		else:
			y_predTotal = np.append(y_predTotal,y_pred,axis=0)
	y_predTotal= np.reshape(y_predTotal,(tot_iter,X_test.shape[0]))

	plt.clf()
	plt.plot( X_train_plot, y_train,  color='red', linewidth=2)
	plt.plot( X_test, y_predTotal.flatten(), color='blue', linewidth=2)
	plt.savefig('ae.png')

	logging.info("  ae predicted mean result: %s" %(y_predTotal.mean(axis=0)))
		#score = mean_squared_error(y_pred, y_test)
		#mae_score = mean_absolute_error(y_pred, y_test)
		#logging.info("   normal ae result: %f_%f" %(score, mae_score))
		#denoise AE
		
	idx_test = 0
	y_predTotal=np.array([])
	for time in range(tot_iter):
		idx_test = idx_test+1
		denois_AE = build_pre_denoiseAE(data_dim, X_train, epoch_pretrain=NUM_PREEPOCH, hidDim=[140,280])
		denois_AE.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
		y_pred = denois_AE.predict(X_test)
		y_pred.reshape(1,X_test.shape[0])
		#logging.info(" denoiseae  predict  result: %s" %(y_pred))

		if (y_predTotal.shape[0] < 1):
			y_predTotal = y_pred
		else:
			y_predTotal = np.append(y_predTotal,y_pred,axis=0)
	y_predTotal= np.reshape(y_predTotal,(tot_iter,X_test.shape[0]))
	logging.info("  denoiseae predicted mean result: %s" %(y_predTotal.mean(axis=0)))

		#score = mean_squared_error(y_pred, y_test)
		#mae_score = mean_absolute_error(y_pred, y_test)
		#logging.info("   denoise ae result: %f_%f" %(score, mae_score))
		# rbf using sigmoid function, feature should be scaled to -1 and 1
	
	idx_test = 0
	
	for time in range(tot_iter):
		idx_test = idx_test+1
		
		scaler = MinMaxScaler()
		X_train_rbm = scaler.fit_transform(X_train)
		rbm = build_RBM(NUM_BPEPOCH, NUM_PREEPOCH, batch_size=BATH_SIZE)
		rbm.fit(X_train_rbm, y_train)
		X_test_rbm = scaler.transform(X_test)
		y_pred = rbm.predict(X_test_rbm)
		logging.info("  dbn predict  result: %s" %(y_pred))
	
	
		#score = mean_squared_error(y_pred, y_test)
		#mae_score = mean_absolute_error(y_pred, y_test)
		#logging.info("   dbn result: %f_%f" %(score, mae_score))
		#Bi-directional LSTM
		#t = load_data(False)
		X_train = np.reshape(X_train, (X_train.shape[0],1,X_train.shape[1]))
        X_test = np.reshape(X_test, (X_test.shape[0],1,X_test.shape[1]))
        
		data_dim = X_train.shape[2]
		timesteps = X_train.shape[1]
        
		#biLSTM = build_BILSTM(timesteps, data_dim)
		#biLSTM.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
		#y_pred = biLSTM.predict(X_test)
		#score = mean_squared_error(y_pred, y_test)
		#mae_score = mean_absolute_error(y_pred, y_test)
		#logging.info("   bi-lstm result: %f_%f" %(score, mae_score))
		#LSTM
		LSTM = build_LSTM(timesteps, data_dim)
		LSTM.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
		y_pred = LSTM.predict(X_test)
		score = mean_squared_error(y_pred, y_test)
		mae_score = mean_absolute_error(y_pred, y_test)
		logging.info("   lstm result: %f_%f" %(score, mae_score))

		#CNN
		CNN = build_CNN(timesteps, data_dim)
		CNN.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
		y_pred = CNN.predict(X_test)
		score = mean_squared_error(y_pred, y_test)
		mae_score = mean_absolute_error(y_pred, y_test)
		logging.info("   cnn result: %f_%f" %(score, mae_score))
Пример #5
0
        # 		X_test_rbm = scaler.transform(X_test)
        # 		y_pred = rbm.predict(X_test_rbm)
        # 		score = mean_squared_error(y_pred, y_test)
        # 		mae_score = mean_absolute_error(y_pred, y_test)
        # 		logging.info("   dbn result: %f_%f" %(score, mae_score))
        #Bi-directional LSTM
        t = load_data(False)
        X_train, y_train, X_test, y_test = t[0], t[1], t[2], t[3]
        data_dim = X_train.shape[2]
        timesteps = X_train.shape[1]
        biLSTM = build_BILSTM(timesteps, data_dim)
        biLSTM.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
        y_pred = biLSTM.predict(X_test)
        score = mean_squared_error(y_pred, y_test)
        mae_score = mean_absolute_error(y_pred, y_test)
        logging.info("   bi-lstm result: %f_%f" % (score, mae_score))
        #LSTM
        LSTM = build_LSTM(timesteps, data_dim)
        LSTM.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
        y_pred = LSTM.predict(X_test)
        score = mean_squared_error(y_pred, y_test)
        mae_score = mean_absolute_error(y_pred, y_test)
        logging.info("   lstm result: %f_%f" % (score, mae_score))
        #CNN
        CNN = build_CNN(timesteps, data_dim)
        CNN.fit(X_train, y_train, epochs=NUM_BPEPOCH, batch_size=BATH_SIZE)
        y_pred = CNN.predict(X_test)
        score = mean_squared_error(y_pred, y_test)
        mae_score = mean_absolute_error(y_pred, y_test)
        logging.info("   cnn result: %f_%f" % (score, mae_score))