segmenter.model, save_best_only=True, save_weights_only=True, monitor='val_loss', verbose=0) log = TensorBoard(log_dir='logs', histogram_freq=0, batch_size=data_loader.batch_size, write_graph=True, write_grads=False) # Use LRFinder to find effective learning rate lr_finder = LRFinder(1e-6, 1e-2, steps_per_epoch, epochs=1) # => (1e-4, 1e-3) lr_scheduler = SGDRScheduler(min_lr=1e-4, max_lr=1e-3, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, cycle_length=10, lr_decay=0.9, mult_factor=1.2) X_train, Y_train, X_valid, Y_valid = DataLoader.load_data(h5_dataset_path, frac=0.9) segmenter.parallel_model.fit_generator(data_loader.generator_from_data(X_train, Y_train), epochs=epochs, steps_per_epoch=steps_per_epoch, validation_data=data_loader.generator_from_data(X_valid, Y_valid), validation_steps=validation_steps, callbacks=[ck, log, lr_scheduler], initial_epoch=initial_epoch) # lr_finder.plot_loss() # plt.savefig("loss.png")
histogram_freq=0, batch_size=data_loader.batch_size, write_graph=True, write_grads=False) # Use LRFinder to find effective learning rate lr_finder = LRFinder(1e-6, 1e-2, steps_per_epoch, epochs=1) # => (2e-4, 3e-4) lr_scheduler = WatchScheduler(lambda _, lr: lr / 2, min_lr=2e-4, max_lr=4e-4, watch="val_loss", watch_his_len=2) lr_scheduler = SGDRScheduler(min_lr=4e-5, max_lr=1e-3, steps_per_epoch=steps_per_epoch, cycle_length=15, lr_decay=0.9, mult_factor=1.2) X_train, Y_train, X_valid, Y_valid = DataLoader.load_data(h5_dataset_path, frac=0.8) print(str(X_train)) print(str(Y_train)) file_path = "D:\\copus\\test_icwb2\\loglog" loglog = open(file_path, 'w') # 打开文件 tokenizer.model.fit_generator( data_loader.generator_from_data(X_train, Y_train, loglog), epochs=1,