def test_model22_1(self): try: import onnx except: unittest.TestCase.skipTest(self, "onnx not found in the libraries") from onnx import numpy_helper import numpy as np model1 = Sequential(self.s, model_table='Simple_CNN1') model1.add(InputLayer(3, 224, 224)) model1.add(Conv2d(8, 7, act='identity', include_bias=False)) model1.add(Reshape(height=448, width=448, depth=2)) model1.add(Dense(2)) model1.add(OutputLayer(act='softmax', n=2)) if self.data_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables") caslib, path = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load') self.s.table.loadtable(caslib=caslib, casout={'name': 'eee', 'replace': True}, path=path) r = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=1) self.assertTrue(r.severity == 0) model1.deploy(self.data_dir_local, output_format='onnx') model_path = os.path.join(self.data_dir_local, 'Simple_CNN1.onnx') m = onnx.load(model_path) self.assertEqual(m.graph.node[1].op_type, 'Reshape') init = numpy_helper.to_array(m.graph.initializer[1]) self.assertTrue(np.array_equal(init, [ -1, 2, 448, 448]))
def test_reshape_layer1(self): dict1 = Reshape(name='reshape', width=1, height=2, depth=3, src_layers=[Dense(name='fc', n=100)]).to_model_params() self.assertTrue(self.sample_syntax['reshape1'] == dict1)
def test_model_crnn_bug(self): model = Sequential(self.s, model_table='crnn') model.add(InputLayer(3,256,16)) model.add(Reshape(height=16,width=256,depth=3)) model.add(Conv2d(64,3,3,stride=1,padding=1)) # size = 16x256x64 model.add(Pooling(2,2,2)) # size = 8x128x64 model.add(Conv2d(128,3,3,stride=1,padding=1)) # size = 8x128x128 model.add(Pooling(2,2,2)) # size = 4x64x128 model.add(Conv2d(256,3,3,stride=1,padding=1,act='IDENTITY')) # size = 4x64x256 model.add(BN(act='RELU')) # size = 4x64x256 model.add(Conv2d(256,3,3,stride=1,padding=1)) # size = 4x64x256 model.add(Pooling(1,2,stride_horizontal=1, stride_vertical=2)) #, padding=1)) # size = 2x64x256 #model.add(Pooling(1,2,stride=2,stride_horizontal=1, stride_vertical=2,)) # size = 2x64x256 model.add(Conv2d(512,3,3,stride=1,padding=1, act='IDENTITY')) # size = 2x64x512 model.add(BN(act='RELU')) model.add(Conv2d(512,3,3,stride=1,padding=1)) # size = 2x64x512 model.add(Pooling(1,2,stride_horizontal=1, stride_vertical=2)) #, padding=1)) # size = 1x64x512 #model.add(Pooling(1,2,stride=2,stride_horizontal=1, stride_vertical=2,)) # size = 1x64x512 model.add(Conv2d(512,3,3,stride=1,padding=1, act='IDENTITY')) # size = 1x64x512 model.add(BN(act='RELU')) model.add(Reshape(order='DWH',width=64, height=512, depth=1)) model.add(Recurrent(512,output_type='SAMELENGTH')) model.add(OutputLayer(error='CTC')) model.print_summary()
def test_formant_name_function(self): ol = Reshape() ol.format_name(block_num=1, local_count=7) self.assertTrue(ol.name == 'Reshape1_7')
def test_reshape_layer2(self): if not __dev__: with self.assertRaises(DLPyError): Reshape(not_a_parameter=1)
def _MBConvBlock(inputs, in_channels, out_channels, ksize, stride, expansion, se_ratio, stage_id, block_id, noskip=False, activation_fn='relu'): ''' Inverted Residual Block Parameters ---------- inputs: input tensor Speecify input tensor for block. in_channels: integer Specifies the number of input tensor's channel. out_channels: integer Specifies the number of output tensor's channel ksize: Specifies the kernel size of the convolution stride: integer Specifies the stride of the convolution expansion: double Specifies the expansion factor for the input layer. se_ratio: double Specifies the ratio to squeeze the input filters for squeeze-and-excitation block. stage_id: integer Specifies stage id for naming layers block_id: Specifies block id for naming layers noskip: bool Specifies whether the skip connection is used. By default, the skip connection is used. activation_fn: Specifies activation function ''' # mobilenetv2 block is also known as inverted residual block, which consists of three convolutions: # the first is 1*1 convolution for expansion # the second is depthwise convolution # the third is 1*1 convolution without any non-linearity for projection x = inputs prefix = 'stage_{}_block_{}'.format(stage_id, block_id) n_groups = in_channels # for expansion=1, n_groups might be different from pointwise_filters if expansion > 1: # For MobileNet V2, expansion>1 when stage>0 n_groups = int(expansion * in_channels) ## update n_groups x = Conv2d(n_groups, 1, include_bias=False, act='identity', name=prefix + 'expand')(x) x = BN(name=prefix + 'expand_BN', act='identity')(x) # Depthwise convolution x = GroupConv2d(n_groups, n_groups, ksize, stride=stride, act='identity', include_bias=False, name=prefix + 'depthwise')(x) x = BN(name=prefix + 'depthwise_BN', act=activation_fn)(x) # Squeeze-Excitation if 0 < se_ratio <= 1: se_input = x # features to be squeezed x = GlobalAveragePooling2D(name=prefix + "global_avg_pool")(x) # Squeeze channels_se = max(1, int(in_channels * se_ratio)) x = Conv2d(channels_se, 1, include_bias=True, act=activation_fn, name=prefix + 'squeeze')(x) x = Conv2d(n_groups, 1, include_bias=True, act='sigmoid', name=prefix + 'excitation')(x) x = Reshape(name=prefix + 'reshape', width=n_groups, height=1, depth=1)(x) x = Scale(name=prefix + 'scale')([se_input, x]) # x = out*w # Project x = Conv2d(out_channels, 1, include_bias=False, act='identity', name=prefix + 'project')(x) x = BN(name=prefix + 'project_BN', act='identity')(x) # identity activation on narrow tensor # Prepare output for MBConv block if in_channels == out_channels and stride == 1 and (not noskip): # dropout can be added. return Res(name=prefix + 'add_se_residual')([x, inputs]) else: return x
def YoloV2_MultiSize(conn, anchors, model_table='YoloV2-MultiSize', n_channels=3, width=416, height=416, scale=1.0 / 255, random_mutation=None, act='leaky', act_detection='AUTO', softmax_for_class_prob=True, coord_type='YOLO', max_label_per_image=30, max_boxes=30, n_classes=20, predictions_per_grid=5, do_sqrt=True, grid_number=13, coord_scale=None, object_scale=None, prediction_not_a_object_scale=None, class_scale=None, detection_threshold=None, iou_threshold=None, random_boxes=False, match_anchor_size=None, num_to_force_coord=None, random_flip=None, random_crop=None): ''' Generates a deep learning model with the Yolov2 architecture. The model is same as Yolov2 proposed in original paper. In addition to Yolov2, the model adds a passthrough layer that brings feature from an earlier layer to lower resolution layer. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. anchors : list Specifies the anchor box values. model_table : string, optional Specifies the name of CAS table to store the model. n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 416 height : int, optional Specifies the height of the input layer. Default: 416 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0 / 255 random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' act : string, optional Specifies the activation function for the batch normalization layers. Default: 'leaky' act_detection : string, optional Specifies the activation function for the detection layer. Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP Default: AUTO softmax_for_class_prob : bool, optional Specifies whether to perform Softmax on class probability per predicted object. Default: True coord_type : string, optional Specifies the format of how to represent bounding boxes. For example, a bounding box can be represented with the x and y locations of the top-left point as well as width and height of the rectangle. This format is the 'rect' format. We also support coco and yolo formats. Valid Values: 'rect', 'yolo', 'coco' Default: 'yolo' max_label_per_image : int, optional Specifies the maximum number of labels per image in the training. Default: 30 max_boxes : int, optional Specifies the maximum number of overall predictions allowed in the detection layer. Default: 30 n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 20 predictions_per_grid : int, optional Specifies the amount of predictions will be done per grid. Default: 5 do_sqrt : bool, optional Specifies whether to apply the SQRT function to width and height of the object for the cost function. Default: True grid_number : int, optional Specifies the amount of cells to be analyzed for an image. For example, if the value is 5, then the image will be divided into a 5 x 5 grid. Default: 13 coord_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects exist in the grid. object_scale : float, optional Specifies the weight for object detected for the cost function in the detection layer. prediction_not_a_object_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects do not exist in the grid. class_scale : float, optional Specifies the weight for the class of object detected for the cost function in the detection layer. detection_threshold : float, optional Specifies the threshold for object detection. iou_threshold : float, optional Specifies the IOU Threshold of maximum suppression in object detection. random_boxes : bool, optional Randomizing boxes when loading the bounding box information. Default: False match_anchor_size : bool, optional Whether to force the predicted box match the anchor boxes in sizes for all predictions num_to_force_coord : int, optional The number of leading chunk of images in training when the algorithm forces predicted objects in each grid to be equal to the anchor box sizes, and located at the grid center random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1612.08242.pdf ''' model = Sequential(conn=conn, model_table=model_table) parameters = locals() input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # conv1 224 416 model.add(Conv2d(32, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv2 112 208 model.add(Conv2d(64, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv3 56 104 model.add( Conv2d(128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv4 56 104 model.add(Conv2d(64, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv5 56 104 model.add( Conv2d(128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv6 28 52 model.add( Conv2d(256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv7 28 52 model.add( Conv2d(128, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv8 28 52 model.add( Conv2d(256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv9 14 26 model.add( Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv10 14 26 model.add( Conv2d(256, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv11 14 26 model.add( Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv12 14 26 model.add( Conv2d(256, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv13 14 26 model.add( Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) pointLayer1 = BN(act=act, name='BN5_13') model.add(pointLayer1) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv14 7 13 model.add( Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv15 7 13 model.add( Conv2d(512, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv16 7 13 model.add( Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv17 7 13 model.add( Conv2d(512, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv18 7 13 model.add( Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv19 7 13 model.add( Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act, name='BN6_19')) # conv20 7 13 model.add( Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) pointLayer2 = BN(act=act, name='BN6_20') model.add(pointLayer2) # conv21 7 26 * 26 * 512 -> 26 * 26 * 64 model.add( Conv2d(64, width=1, act='identity', include_bias=False, stride=1, src_layers=[pointLayer1])) model.add(BN(act=act)) # reshape 26 * 26 * 64 -> 13 * 13 * 256 pointLayer3 = Reshape(act='identity', width=grid_number, height=grid_number, depth=256, name='reshape1') model.add(pointLayer3) # concat model.add(Concat(act='identity', src_layers=[pointLayer2, pointLayer3])) # conv22 7 13 model.add( Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add( Conv2d((n_classes + 5) * predictions_per_grid, width=1, act='identity', include_bias=False, stride=1)) model.add( Detection(act=act_detection, detection_model_type='yolov2', anchors=anchors, softmax_for_class_prob=softmax_for_class_prob, coord_type=coord_type, class_number=n_classes, grid_number=grid_number, predictions_per_grid=predictions_per_grid, do_sqrt=do_sqrt, coord_scale=coord_scale, object_scale=object_scale, prediction_not_a_object_scale=prediction_not_a_object_scale, class_scale=class_scale, detection_threshold=detection_threshold, iou_threshold=iou_threshold, random_boxes=random_boxes, max_label_per_image=max_label_per_image, max_boxes=max_boxes, match_anchor_size=match_anchor_size, num_to_force_coord=num_to_force_coord)) return model
def test_model4(self): try: import onnx from onnx import numpy_helper except: unittest.TestCase.skipTest(self, "onnx not found in the libraries") import numpy as np model1 = Sequential(self.s, model_table='Simple_CNN1') model1.add(InputLayer(3, 224, 224)) model1.add(Conv2d(8, 7, act='identity', include_bias=False)) model1.add(Reshape(height=448, width=448, depth=2, act='IDENTITY')) model1.add(Reshape(height=448, width=448, depth=2, act='RECTIFIER')) model1.add(Conv2d(8, 7, act='identity', include_bias=False)) model1.add(BN(act='relu')) model1.add(Dense(2)) model1.add(OutputLayer(act='softmax', n=2)) if self.data_dir is None: unittest.TestCase.skipTest( self, "DLPY_DATA_DIR is not set in the environment variables") caslib, path, tmp_caslib = caslibify(self.s, path=self.data_dir + 'images.sashdat', task='load') self.s.table.loadtable(caslib=caslib, casout={ 'name': 'eee', 'replace': True }, path=path) r = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=1) self.assertTrue(r.severity == 0) if self.data_dir_local is None: unittest.TestCase.skipTest( self, "DLPY_DATA_DIR_LOCAL is not set in the environment variables") #model1.deploy(self.data_dir_local, output_format='onnx') import tempfile tmp_dir_to_dump = tempfile.gettempdir() model1.deploy(tmp_dir_to_dump, output_format='onnx') import os model_path = os.path.join(tmp_dir_to_dump, 'Simple_CNN1.onnx') m = onnx.load(model_path) self.assertEqual(m.graph.node[1].op_type, 'Reshape') init = numpy_helper.to_array(m.graph.initializer[1]) self.assertTrue(np.array_equal(init, [-1, 2, 448, 448])) import os os.remove(os.path.join(tmp_dir_to_dump, "Simple_CNN1.onnx")) if (caslib is not None) and tmp_caslib: self.s.retrieve('table.dropcaslib', message_level='error', caslib=caslib)