def mnist_logreg(executor_ctx=None, num_epochs=10, print_loss_val_each_epoch=False): print("Build logistic regression model...") W1 = ad.Variable(name="W1") b1 = ad.Variable(name="b1") X = ad.Variable(name="X") y_ = ad.Variable(name="y_") z1 = ad.matmul_op(X, W1) y = z1 + ad.broadcastto_op(b1, z1) loss = ad.softmaxcrossentropy_op(y, y_) grad_W1, grad_b1 = ad.gradients(loss, [W1, b1]) executor = ad.Executor([loss, grad_W1, grad_b1, y], ctx=executor_ctx) # Read input data datasets = load_mnist_data("mnist.pkl.gz") train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # Set up minibatch batch_size = 1000 n_train_batches = train_set_x.shape[0] // batch_size n_valid_batches = valid_set_x.shape[0] // batch_size print("Start training loop...") # Initialize parameters W1_val = np.zeros((784, 10)) b1_val = np.zeros((10)) X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) if ndarray.is_gpu_ctx(executor_ctx): W1_val = ndarray.array(W1_val, ctx=executor_ctx) b1_val = ndarray.array(b1_val, ctx=executor_ctx) X_val = ndarray.array(X_val, ctx=executor_ctx) y_val = ndarray.array(y_val, ctx=executor_ctx) lr = 1e-3 for i in range(num_epochs): print("epoch %d" % i) for minibatch_index in range(n_train_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size X_val[:] = train_set_x[minibatch_start:minibatch_end] y_val[:] = convert_to_one_hot( train_set_y[minibatch_start:minibatch_end]) loss_val, grad_W1_val, grad_b1_val, _ = executor.run(feed_dict={ X: X_val, y_: y_val, W1: W1_val, b1: b1_val }) # SGD update if (executor_ctx is None): W1_val = W1_val - lr * grad_W1_val b1_val = b1_val - lr * grad_b1_val else: sgd_update_gpu(W1_val, grad_W1_val, lr) sgd_update_gpu(b1_val, grad_b1_val, lr) if print_loss_val_each_epoch: if isinstance(loss_val, ndarray.NDArray): print(loss_val.asnumpy()) else: print(loss_val) correct_predictions = [] for minibatch_index in range(n_valid_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end] valid_y_val[:] = convert_to_one_hot( valid_set_y[minibatch_start:minibatch_end]) _, _, _, valid_y_predicted = executor.run( feed_dict={ X: valid_X_val, y_: valid_y_val, W1: W1_val, b1: b1_val }, convert_to_numpy_ret_vals=True) correct_prediction = np.equal(np.argmax(valid_y_val, 1), np.argmax(valid_y_predicted, 1)).astype(np.float) correct_predictions.extend(correct_prediction) accuracy = np.mean(correct_predictions) # validation set accuracy=0.928200 print("validation set accuracy=%f" % accuracy)
def mnist_logreg(executor_ctx, num_epochs=10, print_loss_val_each_epoch=False): print("=== Build logistic regression model...") # recover tgt, tgt_host info from tvm.context if executor_ctx == tvm.cpu(0): tgt = "llvm" tgt_host = "llvm" else: assert False, "non-CPU context not yet supported" W1 = ad.Variable(name="W1") b1 = ad.Variable(name="b1") X = ad.Variable(name="X") y_ = ad.Variable(name="y_") z1 = ad.matmul_op(X, W1) y = z1 + ad.broadcastto_op(b1, z1) loss = ad.softmaxcrossentropy_op(y, y_) grad_W1, grad_b1 = ad.gradients(loss, [W1, b1]) executor = ad.Executor([loss, grad_W1, grad_b1, y], ctx=executor_ctx) # Read input data datasets = load_mnist_data("mnist.pkl.gz") train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # Set up minibatch batch_size = 1000 n_train_batches = train_set_x.shape[0] // batch_size n_valid_batches = valid_set_x.shape[0] // batch_size print("Start training loop...") # Initialize parameters W1_val = np.zeros((784, 10), dtype=np.float32) b1_val = np.zeros((10), dtype=np.float32) X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) # wrap them under tvm.nd.array W1_val = tvm.nd.array(W1_val, ctx=executor_ctx) b1_val = tvm.nd.array(b1_val, ctx=executor_ctx) X_val = tvm.nd.array(X_val, ctx=executor_ctx) y_val = tvm.nd.array(y_val, ctx=executor_ctx) valid_X_val = tvm.nd.array(valid_X_val, ctx=executor_ctx) valid_y_val = tvm.nd.array(valid_y_val, ctx=executor_ctx) # training loop lr = 1e-3 # JIT compile sgd update ops W1_sgd_update_func = tvm_op.make_sgd_update(W1_val.shape, lr, tgt, tgt_host, "W1_sgd_update") b1_sgd_update_func = tvm_op.make_sgd_update(b1_val.shape, lr, tgt, tgt_host, "b1_sgd_update") time_measurements = [] for i in range(num_epochs): print("epoch %d" % i) start_time = time.time() for minibatch_index in range(n_train_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size X_val.copyfrom(train_set_x[minibatch_start:minibatch_end]) y_val.copyfrom( convert_to_one_hot(train_set_y[minibatch_start:minibatch_end])) loss_val, grad_W1_val, grad_b1_val, _ = executor.run(feed_dict={ X: X_val, y_: y_val, W1: W1_val, b1: b1_val }) # SGD update # W1_val = W1_val - lr * grad_W1_val # b1_val = b1_val - lr * grad_b1_val W1_sgd_update_func(W1_val, grad_W1_val, W1_val) b1_sgd_update_func(b1_val, grad_b1_val, b1_val) time_measurements.append(time.time() - start_time) if print_loss_val_each_epoch: print("loss = %f; Time taken this epoch = %f s" % (loss_val.asnumpy().item(), time_measurements[-1])) correct_predictions = [] for minibatch_index in range(n_valid_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size valid_X_val.copyfrom(valid_set_x[minibatch_start:minibatch_end]) valid_y_val.copyfrom( convert_to_one_hot(valid_set_y[minibatch_start:minibatch_end])) _, _, _, valid_y_predicted = executor.run( feed_dict={ X: valid_X_val, y_: valid_y_val, W1: W1_val, b1: b1_val }, convert_to_numpy_ret_vals=True) correct_prediction = np.equal(np.argmax(valid_y_val.asnumpy(), 1), np.argmax(valid_y_predicted, 1)).astype(np.float) correct_predictions.extend(correct_prediction) accuracy = np.mean(correct_predictions) # validation set accuracy=0.928200 print("Validation set accuracy = %f" % accuracy) print("Average Time per Training Epoch = %f s" % np.mean(time_measurements))
def mnist_mlp(executor_ctx=None, num_epochs=10, print_loss_val_each_epoch=False): print("Build 3-layer MLP model...") W1 = ad.Variable(name="W1") W2 = ad.Variable(name="W2") W3 = ad.Variable(name="W3") b1 = ad.Variable(name="b1") b2 = ad.Variable(name="b2") b3 = ad.Variable(name="b3") X = ad.Variable(name="X") y_ = ad.Variable(name="y_") # relu(X W1+b1) z1 = ad.matmul_op(X, W1) z2 = z1 + ad.broadcastto_op(b1, z1) z3 = ad.relu_op(z2) # relu(z3 W2+b2) z4 = ad.matmul_op(z3, W2) z5 = z4 + ad.broadcastto_op(b2, z4) z6 = ad.relu_op(z5) # softmax(z5 W2+b2) z7 = ad.matmul_op(z6, W3) y = z7 + ad.broadcastto_op(b3, z7) loss = ad.softmaxcrossentropy_op(y, y_) grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3 = ad.gradients( loss, [W1, W2, W3, b1, b2, b3]) executor = ad.Executor( [loss, grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3, y], ctx=executor_ctx) # Read input data datasets = load_mnist_data("mnist.pkl.gz") train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # Set up minibatch batch_size = 1000 n_train_batches = train_set_x.shape[0] // batch_size n_valid_batches = valid_set_x.shape[0] // batch_size print("Start training loop...") # Initialize parameters rand = np.random.RandomState(seed=123) W1_val = rand.normal(scale=0.1, size=(784, 256)) W2_val = rand.normal(scale=0.1, size=(256, 100)) W3_val = rand.normal(scale=0.1, size=(100, 10)) b1_val = rand.normal(scale=0.1, size=(256)) b2_val = rand.normal(scale=0.1, size=(100)) b3_val = rand.normal(scale=0.1, size=(10)) X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) if ndarray.is_gpu_ctx(executor_ctx): W1_val = ndarray.array(W1_val, ctx=executor_ctx) W2_val = ndarray.array(W2_val, ctx=executor_ctx) W3_val = ndarray.array(W3_val, ctx=executor_ctx) b1_val = ndarray.array(b1_val, ctx=executor_ctx) b2_val = ndarray.array(b2_val, ctx=executor_ctx) b3_val = ndarray.array(b3_val, ctx=executor_ctx) X_val = ndarray.array(X_val, ctx=executor_ctx) y_val = ndarray.array(y_val, ctx=executor_ctx) lr = 1.0e-3 for i in range(num_epochs): print("epoch %d" % i) for minibatch_index in range(n_train_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size X_val[:] = train_set_x[minibatch_start:minibatch_end] y_val[:] = convert_to_one_hot( train_set_y[minibatch_start:minibatch_end]) loss_val, grad_W1_val, grad_W2_val, grad_W3_val, \ grad_b1_val, grad_b2_val, grad_b3_val, _ = executor.run( feed_dict={ X: X_val, y_: y_val, W1: W1_val, W2: W2_val, W3: W3_val, b1: b1_val, b2: b2_val, b3: b3_val}) # SGD update if (executor_ctx is None): W1_val = W1_val - lr * grad_W1_val W2_val = W2_val - lr * grad_W2_val W3_val = W3_val - lr * grad_W3_val b1_val = b1_val - lr * grad_b1_val b2_val = b2_val - lr * grad_b2_val b3_val = b3_val - lr * grad_b3_val else: sgd_update_gpu(W1_val, grad_W1_val, lr) sgd_update_gpu(W2_val, grad_W2_val, lr) sgd_update_gpu(W3_val, grad_W3_val, lr) sgd_update_gpu(b1_val, grad_b1_val, lr) sgd_update_gpu(b2_val, grad_b2_val, lr) sgd_update_gpu(b3_val, grad_b3_val, lr) if print_loss_val_each_epoch: if isinstance(loss_val, ndarray.NDArray): print(loss_val.asnumpy()) else: print(loss_val) correct_predictions = [] for minibatch_index in range(n_valid_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end] valid_y_val[:] = convert_to_one_hot( valid_set_y[minibatch_start:minibatch_end]) _, _, _, _, _, _, _, valid_y_predicted = executor.run( feed_dict={ X: valid_X_val, y_: valid_y_val, W1: W1_val, W2: W2_val, W3: W3_val, b1: b1_val, b2: b2_val, b3: b3_val }, convert_to_numpy_ret_vals=True) correct_prediction = np.equal(np.argmax(valid_y_val, 1), np.argmax(valid_y_predicted, 1)).astype(np.float) correct_predictions.extend(correct_prediction) accuracy = np.mean(correct_predictions) # validation set accuracy=0.970800 print("validation set accuracy=%f" % accuracy)
def mnist_mlp(executor_ctx=None, num_epochs=10, print_loss_val_each_epoch=False): print("=== Build 3-layer MLP model...") # recover tgt, tgt_host info from tvm.context if executor_ctx == tvm.cpu(0): tgt = "llvm" tgt_host = "llvm" else: assert False, "non-CPU context not yet supported" W1 = ad.Variable(name="W1") W2 = ad.Variable(name="W2") W3 = ad.Variable(name="W3") b1 = ad.Variable(name="b1") b2 = ad.Variable(name="b2") b3 = ad.Variable(name="b3") X = ad.Variable(name="X") y_ = ad.Variable(name="y_") # relu(X W1+b1) z1 = ad.matmul_op(X, W1) z2 = z1 + ad.broadcastto_op(b1, z1) z3 = ad.relu_op(z2) # relu(z3 W2+b2) z4 = ad.matmul_op(z3, W2) z5 = z4 + ad.broadcastto_op(b2, z4) z6 = ad.relu_op(z5) # softmax(z5 W2+b2) z7 = ad.matmul_op(z6, W3) y = z7 + ad.broadcastto_op(b3, z7) loss = ad.softmaxcrossentropy_op(y, y_) grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3 = ad.gradients( loss, [W1, W2, W3, b1, b2, b3]) executor = ad.Executor( [loss, grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3, y], ctx=executor_ctx) # Read input data datasets = load_mnist_data("mnist.pkl.gz") train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # Set up minibatch batch_size = 1000 n_train_batches = train_set_x.shape[0] // batch_size n_valid_batches = valid_set_x.shape[0] // batch_size print("Start training loop...") # Initialize parameters rand = np.random.RandomState(seed=123) W1_val = rand.normal(scale=0.1, size=(784, 256)).astype(np.float32) W2_val = rand.normal(scale=0.1, size=(256, 100)).astype(np.float32) W3_val = rand.normal(scale=0.1, size=(100, 10)).astype(np.float32) b1_val = rand.normal(scale=0.1, size=(256)).astype(np.float32) b2_val = rand.normal(scale=0.1, size=(100)).astype(np.float32) b3_val = rand.normal(scale=0.1, size=(10)).astype(np.float32) X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) # wrap with tvm.nd.array W1_val = tvm.nd.array(W1_val, ctx=executor_ctx) W2_val = tvm.nd.array(W2_val, ctx=executor_ctx) W3_val = tvm.nd.array(W3_val, ctx=executor_ctx) b1_val = tvm.nd.array(b1_val, ctx=executor_ctx) b2_val = tvm.nd.array(b2_val, ctx=executor_ctx) b3_val = tvm.nd.array(b3_val, ctx=executor_ctx) X_val = tvm.nd.array(X_val, ctx=executor_ctx) y_val = tvm.nd.array(y_val, ctx=executor_ctx) valid_X_val = tvm.nd.array(valid_X_val, ctx=executor_ctx) valid_y_val = tvm.nd.array(valid_y_val, ctx=executor_ctx) # training loop lr = 1.0e-3 # JIT compile sgd update ops W1_sgd_update_func = tvm_op.make_sgd_update(W1_val.shape, lr, tgt, tgt_host, "W1_sgd_update") W2_sgd_update_func = tvm_op.make_sgd_update(W2_val.shape, lr, tgt, tgt_host, "W2_sgd_update") W3_sgd_update_func = tvm_op.make_sgd_update(W3_val.shape, lr, tgt, tgt_host, "W3_sgd_update") b1_sgd_update_func = tvm_op.make_sgd_update(b1_val.shape, lr, tgt, tgt_host, "b1_sgd_update") b2_sgd_update_func = tvm_op.make_sgd_update(b2_val.shape, lr, tgt, tgt_host, "b2_sgd_update") b3_sgd_update_func = tvm_op.make_sgd_update(b3_val.shape, lr, tgt, tgt_host, "b3_sgd_update") time_measurements = [] for i in range(num_epochs): print("epoch %d" % i) start_time = time.time() for minibatch_index in range(n_train_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size X_val.copyfrom(train_set_x[minibatch_start:minibatch_end]) y_val.copyfrom( convert_to_one_hot(train_set_y[minibatch_start:minibatch_end])) loss_val, grad_W1_val, grad_W2_val, grad_W3_val, \ grad_b1_val, grad_b2_val, grad_b3_val, _ = executor.run( feed_dict={ X: X_val, y_: y_val, W1: W1_val, W2: W2_val, W3: W3_val, b1: b1_val, b2: b2_val, b3: b3_val}) # SGD update # W1_val = W1_val - lr * grad_W1_val # W2_val = W2_val - lr * grad_W2_val # W3_val = W3_val - lr * grad_W3_val # b1_val = b1_val - lr * grad_b1_val # b2_val = b2_val - lr * grad_b2_val # b3_val = b3_val - lr * grad_b3_val W1_sgd_update_func(W1_val, grad_W1_val, W1_val) W2_sgd_update_func(W2_val, grad_W2_val, W2_val) W3_sgd_update_func(W3_val, grad_W3_val, W3_val) b1_sgd_update_func(b1_val, grad_b1_val, b1_val) b2_sgd_update_func(b2_val, grad_b2_val, b2_val) b3_sgd_update_func(b3_val, grad_b3_val, b3_val) time_measurements.append(time.time() - start_time) if print_loss_val_each_epoch: print("loss = %f; Time taken this epoch = %f s" % (loss_val.asnumpy().item(), time_measurements[-1])) correct_predictions = [] for minibatch_index in range(n_valid_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size valid_X_val.copyfrom(valid_set_x[minibatch_start:minibatch_end]) valid_y_val.copyfrom( convert_to_one_hot(valid_set_y[minibatch_start:minibatch_end])) _, _, _, _, _, _, _, valid_y_predicted = executor.run( feed_dict={ X: valid_X_val, y_: valid_y_val, W1: W1_val, W2: W2_val, W3: W3_val, b1: b1_val, b2: b2_val, b3: b3_val }, convert_to_numpy_ret_vals=True) correct_prediction = np.equal(np.argmax(valid_y_val.asnumpy(), 1), np.argmax(valid_y_predicted, 1)).astype(np.float) correct_predictions.extend(correct_prediction) accuracy = np.mean(correct_predictions) # validation set accuracy=0.970800 print("Validation set accuracy = %f" % accuracy) print("Average Time per Training Epoch = %f s" % np.mean(time_measurements))