def __init__(self, argument): from cas.numeric import Integer Function.__init__(self, 'ln', argument, action=lambda x: dmath.log(x) if isinstance(x, (Decimal, Integer)) else math.log(x))
def __init__(self): # An array of accessible functions self.functions = { # Logarithms 'ln': ln, 'log': lambda a, b=10: dmath.log(a, b), # Trigonometric Functions 'sin': lambda x: handle_type(sin(x)), 'cos': lambda x: handle_type(cos(x)), 'tan': lambda x: handle_type(tan(x)), 'arcsin': lambda x: handle_type(dmath.asin(x)), 'arccos': lambda x: handle_type(dmath.acos(x)), 'arctan': lambda x: handle_type(dmath.atan(x)), 'sinh': lambda x: handle_type(dmath.sinh(x)), 'cosh': lambda x: handle_type(dmath.cosh(x)), 'tanh': lambda x: handle_type(dmath.tanh(x)), 'arcsinh': lambda z: handle_type(log(z + (Integer(1) + z**Integer(2))**Real('0.5'))), 'arccosh': lambda z: ht(log(z + (z + Integer(1))**Real('0.5') * (z - Integer(1))**Real('0.5'))), 'arctanh': lambda z: handle_type(log(Integer(1) + z) - log(Integer(1) - z))/Integer(2), 'degrees': lambda x: handle_type(degrees(x)), # Statistics 'nCr': nCr, 'nPr': nPr, 'binomialpdf': binomialpdf, 'binomialcdf': binomialcdf, 'poissonpdf': poissonpdf, 'poissoncdf': poissoncdf, 'normalcdf': normalcdf, 'mean': lambda a: a.mean(), 'median': lambda a: a.median(), 'mode': lambda a: a.mode(), 'variance': lambda a: a.variance(), 'stdev': lambda a: a.stdev(), 'sxx': lambda a: a.Sxx(), # Manipulation of functions 'expand': expand, 'differentiate': lambda a, b=Symbol('x'):\ partial_differential(a, b), 'integrate': lambda y, a=None, b=None, x=Symbol('x'):\ partial_integral(y, x) if a == None or b == None \ else partial_integral(y, x).limit(a, b, variable=x), 'romberg': lambda f, a, b, *n: f.romberg_integral(a, b, *n), 'trapeziumrule': lambda f, a, b, *n:\ f.trapezoidal_integral(a, b, *n), 'simpsonrule': lambda f, a, b, *n: f.simpson_integral(a, b, *n), 'simpsonthreeeightrule': lambda f, a, b, *n: f.simpson38_integral(a, b, *n), 'roots': lambda a, n=1000: List(*list(a.roots(n))), 'maxima': lambda a, n=100: List(*a.maxima(n)), 'minima': lambda a, n=100: List(*a.minima(n)), # Vectors 'norm': lambda a: a.norm(), # Matrices 'transpose': lambda a: a.transpose(), 'order': lambda a: '{}×{}'.format(*a.order()), 'eval': lambda a, b, c=None: a(b, variable=c), 'identity': identity_matrix, 'diag': diagonal_matrix, 'inv': lambda a: a.inverse(), 'invert': lambda a: a.inverse(), 'decompose': lambda a: List(*a.LU_decomposition()), 'trace': lambda a: a.trace(), 'poly': lambda a: a.characteristic_polynomial(), 'adj': lambda a: a.adjgate(), 'zero': Matrix, 'minor': lambda a, b, c: a.minor(b, c), 'det': lambda a: a.determinant(), 'eigenvalues': lambda a: List(*a.eigenvalues()), 'rank': lambda a: a.rank(), # Complex Numbers 're': lambda a: a.real, 'im': lambda a: a.imag, 'arg': lambda a: a.argument(), 'conj': lambda a: a.conjugate(), # Misc 'yum': pi, 'plot': lambda f, a=-10, b=10: StrWithHtml('testing...', '''<canvas id="{0}" onclick="new CartesianPlot('{0}').simplePlot('{1}',{2},{3})" width="600" height="600">{4}</canvas>'''.format('graph-' + str(random.randint(1, 1000)), f, a, b, gnuplot(f, a, b).html)), 'polarplot': lambda f, a=-pi(), b=pi(): StrWithHtml('testing...', '''<canvas id="{0}" onclick="new PolarPlot('{0}').simplePlot('{1}',{2},{3})" width="600" height="600"></canvas>'''.format('graph-' + str(random.randint(1, 1000)), f, a, b)), 'testcanvas': lambda: StrWithHtml('testing...', '''<canvas id="testcanvas" width="600" height="600"></canvas>'''), 'evalbetween': evalute_between, 'factorial': factorial, 'factors': lambda a: a.factors(), 'decimal': lambda a: Decimal(a) if not isinstance(a, List)\ else List(*list(map(Decimal, a))), 'complex': lambda a: complex(a) if not isinstance(a, List)\ else List(*list(map(complex, a))), 'round': lambda a: handle_type(round), 'list': lambda a: str(list(a)), 'gnuplot': gnuplot, 'type': lambda a: str(type(a)), 'typelist': lambda b: ', '.join(map(lambda a: str(type(a)), b)), 'typematrix': lambda c: '; '.join(map(lambda b: ', '.join(map(lambda a: str(type(a)), b)), c)), 'setprec': self.set_precision, 'setexact': self.set_exact, 'about': lambda:\ StrWithHtml('Copyright Tom Wright <*****@*****.**>', '''<img src="./images/about.png" /> <br>This program was written by Tom Wright <*****@*****.**>'''), 'help': help.help, 'quit': exit, } # An array of accessible post functions self.post_functions = { '!': factorial, 'degs': radians } # An array of standard constants self.consts = { 'pi': pi(), 'g': Real('9.81'), 'h': Real('6.62606896e-34'), } # An array of miscellaneous internal variables such as ans # which stores the previous result self.objects = {'ans': Integer(0)}
def test_log(): for x in range(1, 10): assert dmath.log(x) == math.log(x) assert grad(dmath.log)(x) == 1 / x