Пример #1
0
 def __init__(self, argument):
     from cas.numeric import Integer
     Function.__init__(self,
                       'ln',
                       argument,
                       action=lambda x: dmath.log(x)
                       if isinstance(x,
                                     (Decimal, Integer)) else math.log(x))
    def __init__(self):
        # An array of accessible functions
        self.functions = {
        # Logarithms
            'ln': ln,
            'log': lambda a, b=10: dmath.log(a, b),
        # Trigonometric Functions
            'sin': lambda x: handle_type(sin(x)),
            'cos': lambda x: handle_type(cos(x)),
            'tan': lambda x: handle_type(tan(x)),
            'arcsin': lambda x: handle_type(dmath.asin(x)),
            'arccos': lambda x: handle_type(dmath.acos(x)),
            'arctan': lambda x: handle_type(dmath.atan(x)),
            'sinh': lambda x: handle_type(dmath.sinh(x)),
            'cosh': lambda x: handle_type(dmath.cosh(x)),
            'tanh': lambda x: handle_type(dmath.tanh(x)),
            'arcsinh': lambda z: handle_type(log(z + (Integer(1)
                + z**Integer(2))**Real('0.5'))),
            'arccosh': lambda z: ht(log(z + (z + Integer(1))**Real('0.5')
                * (z - Integer(1))**Real('0.5'))),
            'arctanh': lambda z: handle_type(log(Integer(1) + z)
                - log(Integer(1) - z))/Integer(2),
            'degrees': lambda x: handle_type(degrees(x)),
        # Statistics
            'nCr': nCr,
            'nPr': nPr,
            'binomialpdf': binomialpdf,
            'binomialcdf': binomialcdf,
            'poissonpdf': poissonpdf,
            'poissoncdf': poissoncdf,
            'normalcdf': normalcdf,
            'mean': lambda a: a.mean(),
            'median': lambda a: a.median(),
            'mode': lambda a: a.mode(),
            'variance': lambda a: a.variance(),
            'stdev': lambda a: a.stdev(),
            'sxx': lambda a: a.Sxx(),
        # Manipulation of functions
            'expand': expand,
            'differentiate': lambda a, b=Symbol('x'):\
                partial_differential(a, b),
            'integrate': lambda y, a=None, b=None, x=Symbol('x'):\
                partial_integral(y, x) if a == None or b == None \
                else partial_integral(y, x).limit(a, b, variable=x),
            'romberg': lambda f, a, b, *n: f.romberg_integral(a, b, *n),
            'trapeziumrule': lambda f, a, b, *n:\
                f.trapezoidal_integral(a, b, *n),
            'simpsonrule': lambda f, a, b, *n: f.simpson_integral(a, b, *n),
            'simpsonthreeeightrule': lambda f, a, b, *n: f.simpson38_integral(a, b, *n),
            'roots': lambda a, n=1000: List(*list(a.roots(n))),
            'maxima': lambda a, n=100: List(*a.maxima(n)),
            'minima': lambda a, n=100: List(*a.minima(n)),
        # Vectors
            'norm': lambda a: a.norm(),
        # Matrices
            'transpose': lambda a: a.transpose(),
            'order': lambda a: '{}×{}'.format(*a.order()),
            'eval': lambda a, b, c=None: a(b, variable=c),
            'identity': identity_matrix,
            'diag': diagonal_matrix,
            'inv': lambda a: a.inverse(),
            'invert': lambda a: a.inverse(),
            'decompose': lambda a: List(*a.LU_decomposition()),
            'trace': lambda a: a.trace(),
            'poly': lambda a: a.characteristic_polynomial(),
            'adj': lambda a: a.adjgate(),
            'zero': Matrix,
            'minor': lambda a, b, c: a.minor(b, c),
            'det': lambda a: a.determinant(),
            'eigenvalues': lambda a: List(*a.eigenvalues()),
            'rank': lambda a: a.rank(),
        # Complex Numbers
            're': lambda a: a.real,
            'im': lambda a: a.imag,
            'arg': lambda a: a.argument(),
            'conj': lambda a: a.conjugate(),
        # Misc
            'yum': pi,
            'plot': lambda f, a=-10, b=10: StrWithHtml('testing...',
                '''<canvas id="{0}" onclick="new CartesianPlot('{0}').simplePlot('{1}',{2},{3})" width="600" height="600">{4}</canvas>'''.format('graph-'
                    + str(random.randint(1, 1000)), f, a, b, gnuplot(f, a, b).html)),
            'polarplot': lambda f, a=-pi(), b=pi(): StrWithHtml('testing...',
                '''<canvas id="{0}" onclick="new PolarPlot('{0}').simplePlot('{1}',{2},{3})" width="600" height="600"></canvas>'''.format('graph-'
                    + str(random.randint(1, 1000)), f, a, b)),
            'testcanvas': lambda: StrWithHtml('testing...',
                '''<canvas id="testcanvas" width="600" height="600"></canvas>'''),
            'evalbetween': evalute_between,
            'factorial': factorial,
            'factors': lambda a: a.factors(),
            'decimal': lambda a: Decimal(a) if not isinstance(a, List)\
               else List(*list(map(Decimal, a))),
            'complex': lambda a: complex(a) if not isinstance(a, List)\
               else List(*list(map(complex, a))),
            'round': lambda a: handle_type(round),
            'list': lambda a: str(list(a)),
            'gnuplot': gnuplot,
            'type': lambda a: str(type(a)),
            'typelist': lambda b: ', '.join(map(lambda a: str(type(a)), b)),
            'typematrix': lambda c: '; '.join(map(lambda b:
                ', '.join(map(lambda a: str(type(a)), b)), c)),
            'setprec': self.set_precision,
            'setexact': self.set_exact,
            'about': lambda:\
                StrWithHtml('Copyright Tom Wright <*****@*****.**>',
                '''<img src="./images/about.png" />
                <br>This program was written by Tom Wright
                 <*****@*****.**>'''),
            'help': help.help,
            'quit': exit,
        }

        # An array of accessible post functions
        self.post_functions = {
            '!': factorial,
            'degs': radians
        }

        # An array of standard constants
        self.consts = {
            'pi': pi(),
            'g': Real('9.81'),
            'h': Real('6.62606896e-34'),
        }

        # An array of miscellaneous internal variables such as ans
        # which stores the previous result
        self.objects = {'ans': Integer(0)}
Пример #3
0
def test_log():

    for x in range(1, 10):
        assert dmath.log(x) == math.log(x)
        assert grad(dmath.log)(x) == 1 / x
Пример #4
0
 def __init__(self, argument):
     from cas.numeric import Integer
     Function.__init__(self, 'ln', argument, action=lambda x: dmath.log(x)
         if isinstance(x, (Decimal, Integer)) else math.log(x))