Пример #1
0
def test_EnforceTranslation_bacterial_valine_antisense():
    table_name = "Bacterial"
    protein = "LLTMMVTTTTVMVL"
    protein_sequence = reverse_translate(protein, table=table_name)
    for first_codon_before, first_codon_after in [
        ("ATG", "ATG"),  # methionine stays the only methionine codon
        ("GTG", "GTG"),  # valine-start-codon stays the only valine-start-codon
    ]:
        sequence = first_codon_before + protein_sequence
        cds_constraint = EnforceTranslation(
            genetic_table="Bacterial",
            start_codon="keep",
            location=Location(0, len(sequence), -1),
        )
        problem = DnaOptimizationProblem(
            sequence=reverse_complement(sequence),
            constraints=[cds_constraint],
            objectives=[EnforceChanges()],
            logger=None,
        )
        assert problem.constraints[0].translation == "MLLTMMVTTTTVMVL"
        problem.optimize()
        problem_sequence_rv = reverse_complement(problem.sequence)
        protein_after = translate(
            problem_sequence_rv, table_name, assume_start_codon=True
        )
        assert protein_after == "M" + protein
        assert problem_sequence_rv[:3] == first_codon_after
Пример #2
0
def test_AvoidRareCodons_as_constraint_reversed():
    numpy.random.seed(123)

    sequence = "ATG" "TTT" "ATA" "CCA" "CTT" "TAG"
    rev_sequence = reverse_complement(sequence)
    location = (0, len(sequence), -1)
    problem = DnaOptimizationProblem(
        sequence=rev_sequence,
        constraints=[
            EnforceTranslation(location=location),
            AvoidRareCodons(0.11, "e_coli", location=location),
        ],
    )
    assert problem.all_constraints_pass()
    assert problem.sequence_edits_as_array().sum() == 4
    new_sequence = reverse_complement(problem.sequence)
    assert translate(new_sequence) == translate(sequence)
def test_EnforceTranlationReversed():
    numpy.random.seed(1234)
    sequence = reverse_translate(random_protein_sequence(50, seed=123))
    rev_sequence = reverse_complement(sequence)
    problem = DnaOptimizationProblem(
        sequence=rev_sequence,
        constraints=[
            AvoidPattern("AGC"),
            EnforceTranslation(location=(0, len(sequence), -1))
        ],
    )
    assert not problem.all_constraints_pass()
    problem.resolve_constraints()
    assert problem.all_constraints_pass()
Пример #4
0
def test_AvoidRareCodons_as_objective_reversed():
    numpy.random.seed(123)

    sequence = "ATG" "TTT" "ATA" "CCA" "CTT" "TAG"
    rev_sequence = reverse_complement(sequence)
    location = (0, len(sequence), -1)
    problem = DnaOptimizationProblem(
        sequence=rev_sequence,
        constraints=[EnforceTranslation(location=location)],
        objectives=[AvoidRareCodons(0.11, "e_coli", location=location)],
    )
    assert abs(problem.objective_scores_sum() + 0.09) < 0.001
    problem.optimize()
    assert problem.objective_scores_sum() == 0
Пример #5
0
def test_avoid_hairpin_basics():
    numpy.random.seed(123)
    random_sequences = [random_dna_sequence(30) for i in range(10)]

    full_sequence = "".join([
        seq
        for sequence in random_sequences
        for seq in (random_dna_sequence(50),
                    sequence,
                    random_dna_sequence(50),
                    reverse_complement(sequence),
                    random_dna_sequence(50))
    ])

    problem = DnaOptimizationProblem(full_sequence,
                                     constraints=[AvoidHairpins()])
    assert not problem.all_constraints_pass()
    problem.resolve_constraints()
    assert problem.all_constraints_pass()
Пример #6
0
"""Example of use of the AvoidPAttern specification"""

from dnachisel import (DnaOptimizationProblem, random_dna_sequence,
                       reverse_complement, AvoidHairpins)

random_sequences = [random_dna_sequence(30) for i in range(10)]

full_sequence = "".join([
    seq for sequence in random_sequences
    for seq in (random_dna_sequence(50), sequence, random_dna_sequence(50),
                reverse_complement(sequence), random_dna_sequence(50))
])

problem = DnaOptimizationProblem(full_sequence, constraints=[AvoidHairpins()])

print("\nBefore optimization:\n")
print(problem.constraints_text_summary())

problem.resolve_constraints()

print("\nAfter optimization:\n")

print(problem.constraints_text_summary())
Пример #7
0
def test_enforce_pattern_options():
    # Checks for Github issue #53
    # Test 6 cases: location yes/no, 3 strand options

    sequence = "A" * 10
    pattern = "C" * 4
    # location=None
    problem = dc.DnaOptimizationProblem(
        sequence=sequence,
        constraints=[
            dc.EnforcePatternOccurence(pattern,
                                       occurences=1,
                                       strand="from_location"),
        ],
        logger=None,
    )
    problem.resolve_constraints()
    assert problem.all_constraints_pass()
    assert pattern in problem.sequence

    problem = dc.DnaOptimizationProblem(
        sequence=sequence,
        constraints=[
            dc.EnforcePatternOccurence(pattern, occurences=1, strand="both")
        ],
        logger=None,
    )
    problem.resolve_constraints()
    assert problem.all_constraints_pass()
    assert pattern in problem.sequence

    problem = dc.DnaOptimizationProblem(
        sequence=sequence,
        constraints=[
            dc.EnforcePatternOccurence(pattern, occurences=1, strand=-1)
        ],
        logger=None,
    )
    assert problem.constraints[0].evaluate(problem).score == -1
    problem.resolve_constraints()
    assert problem.all_constraints_pass()
    assert dc.reverse_complement(
        pattern) in problem.sequence  # other strand used

    # location specificed
    # Use -1 strand from location:
    problem = dc.DnaOptimizationProblem(
        sequence=sequence,
        constraints=[
            dc.EnforcePatternOccurence(
                pattern,
                occurences=1,
                strand="from_location",
                location=Location(1, 6, strand=-1),
            )
        ],
        logger=None,
    )
    problem.resolve_constraints()
    assert problem.all_constraints_pass()
    assert dc.reverse_complement(pattern) in problem.sequence

    # Overwrite -1 strand to "both":
    problem = dc.DnaOptimizationProblem(
        sequence=sequence,
        constraints=[
            dc.EnforcePatternOccurence(
                pattern,
                occurences=1,
                strand="both",
                location=Location(1, 6, strand=-1),
            )
        ],
        logger=None,
    )
    problem.resolve_constraints()
    assert problem.all_constraints_pass()
    assert pattern in problem.sequence  # uses +1 strand by default

    # Overwrite -1 strand to +1:
    problem = dc.DnaOptimizationProblem(
        sequence=sequence,
        constraints=[
            dc.EnforcePatternOccurence(
                pattern,
                occurences=1,
                strand=1,
                location=Location(1, 6, strand=-1),
            )
        ],
        logger=None,
    )
    problem.resolve_constraints()
    assert problem.all_constraints_pass()
    assert pattern in problem.sequence  # uses +1 strand