def test(): data = [] data.append([0, 0, 1, 1]) data.append([0, 0, 1, 0.9]) data.append([0, 0, 0.9, 0.9]) data.append([0.8, 1, 0, 0]) data.append([1, 1, 0.1, 0]) data.append([1, 0.9, 0, 0.2]) targets = [] targets.append(0) targets.append(0) targets.append(0) targets.append(1) targets.append(1) targets.append(1) layers = [4, 2, 1] dnn = AutoEncoder(data, data, targets, layers, hidden_layer="TANH", final_layer="TANH", compression_epochs=50, bias=True, autoencoding_only=True) #dnn = DNNRegressor(data, targets, layers, hidden_layer="TanhLayer", final_layer="TanhLayer", compression_epochs=50, bias=True, autoencoding_only=False) dnn = dnn.fit() data.append([0.9, 0.8, 0, 0.1]) print "\n-----" for d in data: print dnn.activate(d)
def test(): data = [] data.append([0,0,1,1]) data.append([0,0,1,0.9]) data.append([0,0,0.9,0.9]) data.append([0.8,1,0,0]) data.append([1,1,0.1,0]) data.append([1,0.9,0,0.2]) targets = [] targets.append(0) targets.append(0) targets.append(0) targets.append(1) targets.append(1) targets.append(1) layers = [4,2,1] dnn = AutoEncoder(data, data, targets, layers, hidden_layer="TANH", final_layer="TANH", compression_epochs=50, bias=True, autoencoding_only=True) #dnn = DNNRegressor(data, targets, layers, hidden_layer="TanhLayer", final_layer="TanhLayer", compression_epochs=50, bias=True, autoencoding_only=False) dnn = dnn.fit() data.append([0.9, 0.8, 0, 0.1]) print "\n-----" for d in data: print dnn.activate(d)
def autoencode(self, data, targets, cv, epochs=1, new=True): if new: end = 1000 autoencoder = AutoEncoder( data[:end], targets[:end], [1875, 900, 9], hidden_layer="SigmoidLayer", final_layer="SigmoidLayer", compression_epochs=epochs, bias=True, autoencoding_only=True, ) autoencoder = autoencoder.fit() save(filename, autoencoder) else: autoencoder = load(filename) data = [autoencoder.activate(d) for d in data] cv = [autoencoder.activate(c) for c in cv] print data[0][:10] return data, cv