Пример #1
0
ENVS = [
    #'flow-ring-random-v0',
    #'flow-ring-controller-v0',
    'flow-merge-random-v0',
    'flow-merge-controller-v0',
]

mounts = []
mounts.append(
    doodad.MountLocal(local_dir='~/code/d4rl',
                      mount_point='/code/d4rl',
                      pythonpath=True))

sweeper = launcher.DoodadSweeper(mounts=mounts,
                                 docker_img='justinfu/brac_flow:0.3',
                                 docker_output_dir='/root/tmp/offlinerl',
                                 gcp_bucket_name='justin-doodad',
                                 gcp_image='ubuntu-1804-docker-gpu',
                                 gcp_project='qlearning000')

for env_name in ENVS:
    env = gym.make(env_name)
    _, dataset = os.path.split(env.dataset_filepath)
    dirname, _ = os.path.splitext(dataset)

    params = {
        'env_name': [env_name],
        'seed': range(3),
        'agent_name': ['brac_primal'],
        'total_train_steps': [100000],
        'sub_dir': ['auto'],
        'model_arch': [1],
Пример #2
0
    'flow-merge-controller-v0',
]
ENVS.extend(FLOW_ENVS)

mounts = []

mounts.append(doodad.MountLocal(local_dir='~/code/awr',
                                mount_point='/code/awr', pythonpath=True))
mounts.append(doodad.MountLocal(local_dir='~/code/d4rl',
                              mount_point='/code/d4rl', pythonpath=True))


sweeper = launcher.DoodadSweeper(
    mounts=mounts,
    docker_img='justinfu/awr:0.1',
    gcp_bucket_name='justin-doodad',
    gcp_image='ubuntu-1804-docker-gpu',
    gcp_project='qlearning000'
)

flow_sweeper = launcher.DoodadSweeper(
    mounts=mounts,
    docker_img='justinfu/awr_flow:0.1',
    gcp_bucket_name='justin-doodad',
    gcp_image='ubuntu-1804-docker-gpu',
    gcp_project='qlearning000'
)


for env_name in ENVS:
    env = gym.make(env_name)
Пример #3
0
    #'flow-ring-random-v0',
    #'flow-ring-controller-v0',
    "flow-merge-random-v0",
    "flow-merge-controller-v0",
]

mounts = []
mounts.append(
    doodad.MountLocal(local_dir="~/code/d4rl",
                      mount_point="/code/d4rl",
                      pythonpath=True))

sweeper = launcher.DoodadSweeper(
    mounts=mounts,
    docker_img="justinfu/brac_flow:0.3",
    docker_output_dir="/root/tmp/offlinerl",
    gcp_bucket_name="justin-doodad",
    gcp_image="ubuntu-1804-docker-gpu",
    gcp_project="qlearning000",
)

for env_name in ENVS:
    env = gym.make(env_name)
    _, dataset = os.path.split(env.dataset_filepath)
    dirname, _ = os.path.splitext(dataset)

    params = {
        "env_name": [env_name],
        "seed": range(3),
        "agent_name": ["brac_primal"],
        "total_train_steps": [100000],
        "sub_dir": ["auto"],
Пример #4
0
 def setUp(self):
     self.sweeper = launcher.DoodadSweeper()