Пример #1
0
    def test_non_overlapping_get(self):
        chunks_per_process = self.dataset.chunk_grid[0] // mpi_size()

        x_start = mpi_rank() * chunks_per_process * DATA_CHUNK_SIZE[0]
        if mpi_rank() == mpi_size() - 1:
            x_stop = self.dataset.shape[0]
        else:
            x_stop = (mpi_rank() + 1) * chunks_per_process * DATA_CHUNK_SIZE[0]
        if x_start < self.dataset.shape[0]:
            np.testing.assert_array_equal(self.dataset[x_start:x_stop, ...],
                                          self.data[x_start:x_stop, ...])
        mpi_barrier()
Пример #2
0
def get_output_dataset():
    # only one node should create results
    dname = '{}/{}'.format(backend.name, mpi_size())
    fname = join(OUT_PATH, 'result.h5')
    shape = (len(DATA_SIZE), len(CHUNK_SIZE), 3, NTESTS)

    with h5.File(fname, 'a') as g:
        if dname in g:
            if g[dname].shape != shape:
                raise ValueError('Dataset exists with invalid shape')
        else:
            g.create_dataset(dname, shape=shape, dtype=np.float32)
            g[dname].attrs['axis0_label'] = 'Data Size'
            g[dname].attrs['axis1_label'] = 'Chunk Size'
            g[dname].attrs['axis2_label'] = 'Tests'
            g[dname].attrs['axis3_label'] = '# Tests'
            g[dname].attrs['axis0_value'] = DATA_SIZE
            g[dname].attrs['axis1_value'] = CHUNK_SIZE
            g[dname].attrs['axis2_value'] = np.array(['DATA', '3D', '1D'],
                                                     dtype='S4')
            g[dname].attrs['axis3_value'] = list(range(NTESTS))

    h5out = h5.File(fname, 'a')
    h5result = h5out[dname]
    return h5out, h5result
Пример #3
0
    def test_non_overlapping_set(self):
        chunks_per_process = self.dataset.chunk_grid[0] // mpi_size()

        x_start = mpi_rank() * chunks_per_process * DATA_CHUNK_SIZE[0]
        if mpi_rank() == mpi_size() - 1:
            x_stop = self.dataset.shape[0]
        else:
            x_stop = (mpi_rank() + 1) * chunks_per_process * DATA_CHUNK_SIZE[0]
        if x_start < self.dataset.shape[0]:
            self.dataset[x_start:x_stop, ...] = \
                self.data[x_start:x_stop, ...] * 3 + 5
        mpi_barrier()
        if mpi_is_root():
            expected = self.data * 3 + 5
            result = self.dataset[...]
            np.testing.assert_array_equal(result, expected)
        mpi_barrier()
Пример #4
0
    def setUp(self):
        if ENGINE == 'mpi' and mpi_size() > 1:
            self.skipTest("This should not test concurrent access")

        log.info('DatasetTest: %s, %s, %s',
                 BACKEND, ENGINE, CONNECTION_CONFIG)

        self.fake_dataset = 'NotADataset'
        self.data = np.random.random_integers(DATASET_NUMBER_RANGE[0],
                                              DATASET_NUMBER_RANGE[1],
                                              DATA_SIZE)
        self.dataset = self.connection_handle.create_dataset(
            self.fake_dataset, data=self.data, chunk_size=DATA_CHUNK_SIZE)
Пример #5
0
def convolve1(ds, sigma):
    mpi_barrier()

    pprint('Convolving in 3D', rank=0)

    with MpiTimer('Separable 3D convolution') as T:
        ds3d_ = ds.clone('gaussian_3d')

        for z in range(mpi_rank(), ds.chunk_grid[0], mpi_size()):
            zS = z * ds.chunk_size[0]
            zE = min(zS + ds.chunk_size[0], ds.shape[0])
            for y in range(ds.chunk_grid[1]):
                yS = y * ds.chunk_size[1]
                yE = min(yS + ds.chunk_size[1], ds.shape[1])
                for x in range(ds.chunk_grid[2]):
                    xS = x * ds.chunk_size[2]
                    xE = min(xS + ds.chunk_size[2], ds.shape[2])
                    out = gaussian_filter(ds[zS:zE, yS:yE, xS:xE], sigma=sigma)
                    ds3d_[zS:zE, yS:yE, xS:xE] = out
        mpi_barrier()

    if mpi_root():
        try:
            imsave(
                join(
                    OUT_PATH,
                    'conv3d_{}-{}-{}.png'.format(mpi_size(), ds.shape[0],
                                                 ds.chunk_size[0])),
                ds3d_[ds.shape[0] // 2])
        except NameError:
            pass
    mpi_barrier()

    ds3d_.delete()

    return T.time
Пример #6
0
    def setUp(self):
        if ENGINE != "mpi" or mpi_size() < 2:
            self.skipTest("Test for engine mpi with several processes")

        if BACKEND == "ram":
            self.skipTest("Concurrent access in backend ram is not supported")

        log.info('DatasetTest: %s, %s, %s',
                 BACKEND, ENGINE, CONNECTION_CONFIG)

        self.fake_dataset = 'NotADataset'
        data = None
        if mpi_is_root():
            data = np.random.random_integers(DATASET_NUMBER_RANGE[0],
                                             DATASET_NUMBER_RANGE[1],
                                             DATA_SIZE)
        self.data = mpi_comm().bcast(data, root=0)
        self.dataset = self.connection_handle.create_dataset(
            self.fake_dataset, data=self.data, chunk_size=DATA_CHUNK_SIZE)
Пример #7
0
h5in = h5.File(fname, 'r')
h5data = h5in['data']

###############################################################################

with MpiTimer('DosNa %s (%s)' % (engine.name, backend.name)):

    with dn.Cluster('/tmp/') as C:

        with C.create_pool('test_dosna') as P:
            data = P.create_dataset('test_data',
                                    data=h5data,
                                    chunks=(CS, CS, CS))

            for start in range(mpi_rank() * CS, DS, mpi_size() * CS):
                stop = start + CS
                i = start
                j = min(stop, DS)
                np.testing.assert_allclose(data[i:j], h5data[i:j])

            for start in range(mpi_rank() * CS, DS, mpi_size() * CS):
                stop = start + CS
                i = start
                j = min(stop, DS)
                np.testing.assert_allclose(data[:, i:j], h5data[:, i:j])

            for start in range(mpi_rank() * CS, DS, mpi_size() * CS):
                stop = start + CS
                i = start
                j = min(stop, DS)
Пример #8
0
def convolve2(ds, sigma):
    mpi_barrier()

    with MpiTimer('Three separable 1D convolutions') as T:
        pprint('Convolving axis Z', rank=0)

        ds1_ = ds.clone('gaussian_z')

        for z in range(mpi_rank(), ds.chunk_grid[0], mpi_size()):
            zS = z * ds.chunk_size[0]
            zE = min(zS + ds.chunk_size[0], ds.shape[0])
            out = gaussian_filter1d(ds[zS:zE], sigma=sigma, axis=0)
            ds1_[zS:zE] = out

        mpi_barrier()

        # Gaussian second axis

        pprint('Convolving axis Y', rank=0)

        ds2_ = ds.clone('gaussian_y')

        for y in range(mpi_rank(), ds.chunk_grid[1], mpi_size()):
            yS = y * ds.chunk_size[1]
            yE = min(yS + ds.chunk_size[1], ds.shape[1])
            out = gaussian_filter1d(ds1_[:, yS:yE], sigma=sigma, axis=1)
            ds2_[:, yS:yE] = out

        mpi_barrier()

        # Gaussian second axis

        pprint('Convolving axis X', rank=0)

        ds3_ = ds.clone('gaussian_x')

        for x in range(mpi_rank(), ds.chunk_grid[2], mpi_size()):
            xS = x * ds.chunk_size[2]
            xE = min(xS + ds.chunk_size[2], ds.shape[2])
            out = gaussian_filter1d(ds2_[..., xS:xE], sigma=sigma, axis=2)
            ds3_[..., xS:xE] = out

        mpi_barrier()

    if mpi_root():
        try:
            imsave(
                join(
                    OUT_PATH,
                    'conv3x1d_{}-{}-{}.png'.format(mpi_size(), ds.shape[0],
                                                   ds.chunk_size[0])),
                ds3_[ds.shape[0] // 2])
        except NameError:
            pass
    mpi_barrier()

    ds1_.delete()
    ds2_.delete()
    ds3_.delete()

    return T.time