Lasso(), Lasso(), Lasso(), dml_procedure='dml1', n_rep=n_rep, n_folds=n_folds) pliv_dml1.fit() pliv_dml1.bootstrap(n_rep_boot=n_rep_boot) irm_dml1 = DoubleMLIRM(dml_data_irm, Lasso(), LogisticRegression(), dml_procedure='dml1', n_rep=n_rep, n_folds=n_folds) irm_dml1.fit() irm_dml1.bootstrap(n_rep_boot=n_rep_boot) iivm_dml1 = DoubleMLIIVM(dml_data_iivm, Lasso(), LogisticRegression(), LogisticRegression(), dml_procedure='dml1', n_rep=n_rep, n_folds=n_folds) iivm_dml1.fit() iivm_dml1.bootstrap(n_rep_boot=n_rep_boot) @pytest.mark.ci @pytest.mark.parametrize('dml_obj', [plr_dml1, pliv_dml1, irm_dml1, iivm_dml1])
def test_doubleml_exception_learner(): err_msg_prefix = 'Invalid learner provided for ml_g: ' warn_msg_prefix = 'Learner provided for ml_g is probably invalid: ' msg = err_msg_prefix + 'provide an instance of a learner instead of a class.' with pytest.raises(TypeError, match=msg): _ = DoubleMLPLR(dml_data, Lasso, ml_m) msg = err_msg_prefix + r'BaseEstimator\(\) has no method .fit\(\).' with pytest.raises(TypeError, match=msg): _ = DoubleMLPLR(dml_data, BaseEstimator(), ml_m) # msg = err_msg_prefix + r'_DummyNoSetParams\(\) has no method .set_params\(\).' with pytest.raises(TypeError): _ = DoubleMLPLR(dml_data, _DummyNoSetParams(), ml_m) # msg = err_msg_prefix + r'_DummyNoSetParams\(\) has no method .get_params\(\).' with pytest.raises(TypeError): _ = DoubleMLPLR(dml_data, _DummyNoGetParams(), ml_m) # msg = 'Learner provided for ml_m is probably invalid: ' + r'_DummyNoClassifier\(\) is \(probably\) no classifier.' with pytest.warns(UserWarning): _ = DoubleMLIRM(dml_data_irm, Lasso(), _DummyNoClassifier()) # ToDo: Currently for ml_g (and others) we only check whether the learner can be identified as regressor. However, # we do not check whether it can instead be identified as classifier, which could be used to throw an error. msg = warn_msg_prefix + r'LogisticRegression\(\) is \(probably\) no regressor.' with pytest.warns(UserWarning, match=msg): _ = DoubleMLPLR(dml_data, LogisticRegression(), Lasso()) # we allow classifiers for ml_m in PLR, but only for binary treatment variables msg = (r'The ml_m learner LogisticRegression\(\) was identified as classifier ' 'but at least one treatment variable is not binary with values 0 and 1.') with pytest.raises(ValueError, match=msg): _ = DoubleMLPLR(dml_data, Lasso(), LogisticRegression()) # we allow classifiers for ml_g for binary treatment variables in IRM msg = (r'The ml_g learner LogisticRegression\(\) was identified as classifier ' 'but the outcome variable is not binary with values 0 and 1.') with pytest.raises(ValueError, match=msg): _ = DoubleMLIRM(dml_data_irm, LogisticRegression(), LogisticRegression()) # we allow classifiers for ml_g for binary treatment variables in IRM msg = (r'The ml_g learner LogisticRegression\(\) was identified as classifier ' 'but the outcome variable is not binary with values 0 and 1.') with pytest.raises(ValueError, match=msg): _ = DoubleMLIIVM(dml_data_iivm, LogisticRegression(), LogisticRegression(), LogisticRegression()) # construct a classifier which is not identifiable as classifier via is_classifier by sklearn # it then predicts labels and therefore an exception will be thrown log_reg = LogisticRegression() log_reg._estimator_type = None msg = (r'Learner provided for ml_m is probably invalid: LogisticRegression\(\) is \(probably\) neither a regressor ' 'nor a classifier. Method predict is used for prediction.') with pytest.warns(UserWarning, match=msg): dml_plr_hidden_classifier = DoubleMLPLR(dml_data_irm, Lasso(), log_reg) msg = (r'For the binary treatment variable d, predictions obtained with the ml_m learner LogisticRegression\(\) ' 'are also observed to be binary with values 0 and 1. Make sure that for classifiers probabilities and not ' 'labels are predicted.') with pytest.raises(ValueError, match=msg): dml_plr_hidden_classifier.fit() # construct a classifier which is not identifiable as classifier via is_classifier by sklearn # it then predicts labels and therefore an exception will be thrown # whether predict() or predict_proba() is being called can also be manipulated via the unrelated max_iter variable log_reg = LogisticRegressionManipulatedPredict() log_reg._estimator_type = None msg = (r'Learner provided for ml_g is probably invalid: LogisticRegressionManipulatedPredict\(\) is \(probably\) ' 'neither a regressor nor a classifier. Method predict is used for prediction.') with pytest.warns(UserWarning, match=msg): dml_irm_hidden_classifier = DoubleMLIRM(dml_data_irm_binary_outcome, log_reg, LogisticRegression()) msg = (r'For the binary outcome variable y, predictions obtained with the ml_g learner ' r'LogisticRegressionManipulatedPredict\(\) are also observed to be binary with values 0 and 1. Make sure ' 'that for classifiers probabilities and not labels are predicted.') with pytest.raises(ValueError, match=msg): dml_irm_hidden_classifier.fit() with pytest.raises(ValueError, match=msg): dml_irm_hidden_classifier.set_ml_nuisance_params('ml_g0', 'd', {'max_iter': 314}) dml_irm_hidden_classifier.fit() msg = (r'Learner provided for ml_g is probably invalid: LogisticRegressionManipulatedPredict\(\) is \(probably\) ' 'neither a regressor nor a classifier. Method predict is used for prediction.') with pytest.warns(UserWarning, match=msg): dml_iivm_hidden_classifier = DoubleMLIIVM(dml_data_iivm_binary_outcome, log_reg, LogisticRegression(), LogisticRegression()) msg = (r'For the binary outcome variable y, predictions obtained with the ml_g learner ' r'LogisticRegressionManipulatedPredict\(\) are also observed to be binary with values 0 and 1. Make sure ' 'that for classifiers probabilities and not labels are predicted.') with pytest.raises(ValueError, match=msg): dml_iivm_hidden_classifier.fit() with pytest.raises(ValueError, match=msg): dml_iivm_hidden_classifier.set_ml_nuisance_params('ml_g0', 'd', {'max_iter': 314}) dml_iivm_hidden_classifier.fit()
from doubleml.datasets import make_plr_CCDDHNR2018, make_irm_data, make_pliv_CHS2015, make_iivm_data from sklearn.linear_model import Lasso, LogisticRegression np.random.seed(3141) dml_data_plr = make_plr_CCDDHNR2018(n_obs=100) dml_data_pliv = make_pliv_CHS2015(n_obs=100, dim_z=1) dml_data_irm = make_irm_data(n_obs=100) dml_data_iivm = make_iivm_data(n_obs=100) dml_plr = DoubleMLPLR(dml_data_plr, Lasso(), Lasso()) dml_plr.fit() dml_pliv = DoubleMLPLIV(dml_data_pliv, Lasso(), Lasso(), Lasso()) dml_pliv.fit() dml_irm = DoubleMLIRM(dml_data_irm, Lasso(), LogisticRegression()) dml_irm.fit() dml_iivm = DoubleMLIIVM(dml_data_iivm, Lasso(), LogisticRegression(), LogisticRegression()) dml_iivm.fit() # fit models with callable scores plr_score = dml_plr._score_elements dml_plr_callable_score = DoubleMLPLR(dml_data_plr, Lasso(), Lasso(), score=plr_score, draw_sample_splitting=False) dml_plr_callable_score.set_sample_splitting(dml_plr.smpls) dml_plr_callable_score.fit(store_predictions=True) irm_score = dml_irm._score_elements