def test_sorted(): digest = TDigest() for i in range(10000): digest.add(random.random(), 1 + random.randint(0, 10)) prev = None for c in digest.centroids: assert prev is None or prev.mean <= c.mean prev = c
def __init__(self, sched, tasks, cpus=1, mem=100, gpus=0, task_host_manager=None): self.start_time = time.time() self.sched = sched self.tasks = tasks self.id = tasks[0].taskset_id self.ttids = set() for t in self.tasks: t.status = None t.num_try = 0 t.time_used = 0 t.cpus = cpus t.mem = mem t.gpus = gpus self.launched = [False] * len(tasks) self.finished = [False] * len(tasks) self.numFailures = [0] * len(tasks) self.running_hosts = [[] for _ in range(len(tasks))] self.tidToIndex = {} self.counter = TaskCounter(len(tasks)) self.total_time_used = 0 self.max_task_time = 0 self.lastPreferredLaunchTime = time.time() self.pendingTasksForHost = {} self.pendingTasksWithNoPrefs = [] self.allPendingTasks = [] self.reasons = set() self.failed = False self.causeOfFailure = '' self.last_check = 0 for i in range(len(tasks)): self._addPendingTask(i) self.host_cache = {} self.task_host_manager = task_host_manager if task_host_manager is not None \ else TaskHostManager() self.id_retry_host = {} self.task_local_set = set() self.mem_digest = TDigest() self.max_stage_time = 0 self.mem90 = 0 # TODO: move to stage
def test_fill(): def q_to_k(q): return asin(2 * min(1, q) - 1) / pi + 0.5 delta = 300 digest = TDigest(delta) for i in range(100000): digest.add(random.gauss(0, 1)) q0 = 0. for c in digest.centroids: q1 = q0 + float(c.count) / len(digest) dk = delta * (q_to_k(q1) - q_to_k(q0)) assert dk <= 1 q0 = q1
def test_serialization(): digest = TDigest() for i in range(100): digest.add(random.random()) digest2 = pickle.loads(pickle.dumps(digest)) assert len(digest) == len(digest2) assert len(digest.centroids) == len(digest2.centroids) for c1, c2 in zip(digest.centroids, digest2.centroids): assert c1.mean == c2.mean assert c1.count == c2.count for q in range(10000): assert digest.quantile(q / 10000.) == digest2.quantile(q / 10000.) assert digest.cdf(q / 10000.) == digest2.cdf(q / 10000.)
def test_repeated_values(): digest = TDigest() data = [rint(random.uniform(0, 1) * 10) / 10. for _ in range(10000)] for d in data: digest.add(d) assert len(digest.centroids) < 10 * 1000. for i in range(10): z = i / 10. for delta in [0.01, 0.02, 0.03, 0.07, 0.08, 0.09]: q = z + delta cdf = digest.cdf(q) assert abs(z + 0.05 - cdf) < 0.02 estimate = digest.quantile(q) assert abs(rint(q * 10) / 10. - estimate) < 0.001
def test_monocity(): digest = TDigest() for i in range(10000): digest.add(random.random()) for i in range(int(1e4) - 1): q1 = i * 1e-4 q2 = (i + 1) * 1e-4 assert digest.quantile(q1) <= digest.quantile(q2) assert digest.cdf(q1) <= digest.cdf(q2)
def test_extreme(): digest = TDigest() digest.add(10, 3) digest.add(20, 1) digest.add(40, 5) values = [5., 10., 15., 20., 30., 35., 40., 45., 50.] for q in [1.5 / 9, 3.5 / 9, 6.5 / 9]: assert abs(quantile(values, q) - digest.quantile(q)) < 0.01
def test_few_values(): digest = TDigest() length = random.randint(1, 10) values = [] for i in range(length): if i == 0 or random.random() < 0.5: value = random.random() * 100 else: value = values[-1] digest.add(value) values.append(value) values = sorted(values) assert len(digest.centroids) == len(values) for q in [0, 1e-10, random.random(), 0.5, 1 - 1e-10, 1]: q1 = quantile(values, q) q2 = digest.quantile(q) assert abs(q1 - q2) < 0.03
def test_narrow_normal(): digest = TDigest() data = [] for i in range(10000): if random.random() < 0.5: data.append(random.gauss(0, 1e-5)) else: data.append(random.uniform(-1, 1)) _test_distribution(digest, data, [0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999], 100)
def test_merge(): for parts in [2, 5, 10, 20, 50, 100]: data = [] digest = TDigest() subs = [TDigest() for _ in range(parts)] cnt = [0] * parts for i in range(10000): x = random.random() data.append(x) digest.add(x) subs[i % parts].add(x) cnt[i % parts] += 1 digest.compress() data = sorted(data) k = 0 for i, d in enumerate(subs): assert cnt[i] == len(d) k2 = sum(c.count for c in d.centroids) assert cnt[i] == k2 k += k2 assert k == len(data) digest2 = reduce(lambda x, y: x + y, subs) for q in [0.001, 0.01, 0.1, 0.2, 0.3, 0.5]: z = quantile(data, q) e2 = digest2.quantile(q) - z assert abs(e2) / q < 0.3 assert abs(e2) < 0.015 for q in [0.001, 0.01, 0.1, 0.2, 0.3, 0.5]: z = cdf(data, q) e2 = digest2.cdf(q) - z assert abs(e2) / q < 0.3 assert abs(e2) < 0.015
def test_nan(): digest = TDigest() iters = random.randint(0, 10) for i in range(iters): digest.add(random.random(), 1 + random.randint(0, 10)) try: if random.random() < 0.5: digest.add(float('nan')) else: digest.add(float('nan'), 1) assert False except ValueError: pass
def test_more_than_2billion_values(): digest = TDigest() for i in range(1000): digest.add(random.random()) for i in range(10): digest.add(random.random(), 1 << 28) assert len(digest) == 1000 + 10 * (1 << 28) prev = None for q in sorted([0, 0.1, 0.5, 0.9, 1, random.random()]): v = digest.quantile(q) assert prev is None or v >= prev prev = v
def test_three_point_example(): digest = TDigest() x0 = 0.18615591526031494 x1 = 0.4241943657398224 x2 = 0.8813006281852722 digest.add(x0) digest.add(x1) digest.add(x2) p10 = digest.quantile(0.1) p50 = digest.quantile(0.5) p90 = digest.quantile(0.9) p95 = digest.quantile(0.95) p99 = digest.quantile(0.99) assert p10 <= p50 assert p50 <= p90 assert p90 <= p95 assert p95 <= p99 assert x0 == p10 assert x2 == p90
def test_single_value(): digest = TDigest() value = random.random() * 1000 digest.add(value) for q in [0, random.random(), 1]: assert abs(value - digest.quantile(q)) < 1e-3
def test_small_count_quantile(): digest = TDigest(200) for d in [15.0, 20.0, 32.0, 60.0]: digest.add(d) assert abs(digest.quantile(0.4) - 21.2) < 1e-10
def test_singleton_in_a_crowd(): compression = 100 digest = TDigest(compression=compression) for i in range(10000): digest.add(10) digest.add(20) digest.compress() assert digest.quantile(0) == 10.0 assert digest.quantile(0.5) == 10.0 assert digest.quantile(0.8) == 10.0 assert digest.quantile(0.9) == 10.0 assert digest.quantile(0.99) == 10.0 assert digest.quantile(1) == 20.0
def test_empty_digest(): digest = TDigest() assert len(digest.centroids) == 0
def test_sequential_points(): digest = TDigest() data = [i * pi * 1e-5 for i in range(10000)] _test_distribution(digest, data, [0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999], 100)
def test_gamma(): digest = TDigest() _test_distribution(digest, [random.gammavariate(0.1, 0.1) for _ in range(10000)], [0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999], 100)
def test_uniform(): digest = TDigest() _test_distribution(digest, [random.uniform(0, 1) for _ in range(10000)], [0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999], 100)
class TaskSet(object): """ A TaskSet runs a set of tasks of a Stage with retry. - Task_id seen by TaskSet not include task.num_try - Each task try four times before abort. - Enlarge task.mem if fail for OOM. - Retry for lagging tasks. """ def __init__(self, sched, tasks, cpus=1, mem=100, gpus=0, task_host_manager=None): self.start_time = time.time() self.sched = sched self.tasks = tasks self.id = tasks[0].taskset_id self.ttids = set() for t in self.tasks: t.status = None t.num_try = 0 t.time_used = 0 t.cpus = cpus t.mem = mem t.gpus = gpus self.launched = [False] * len(tasks) self.finished = [False] * len(tasks) self.numFailures = [0] * len(tasks) self.running_hosts = [[] for _ in range(len(tasks))] self.tidToIndex = {} self.counter = TaskCounter(len(tasks)) self.total_time_used = 0 self.max_task_time = 0 self.lastPreferredLaunchTime = time.time() self.pendingTasksForHost = {} self.pendingTasksWithNoPrefs = [] self.allPendingTasks = [] self.reasons = set() self.failed = False self.causeOfFailure = '' self.last_check = 0 for i in range(len(tasks)): self._addPendingTask(i) self.host_cache = {} self.task_host_manager = task_host_manager if task_host_manager is not None \ else TaskHostManager() self.id_retry_host = {} self.task_local_set = set() self.mem_digest = TDigest() self.max_stage_time = 0 self.mem90 = 0 # TODO: move to stage @property def taskEverageTime(self): if not self.counter.finished: return 10 return max(self.total_time_used / self.counter.finished, 5) def _addPendingTask(self, i): loc = self.tasks[i].preferredLocations() if not loc: self.pendingTasksWithNoPrefs.append(i) else: for host in loc: self.pendingTasksForHost.setdefault(host, []).append(i) self.allPendingTasks.append(i) def _getPendingTasksForHostWithCache(self, host): tasks = self.host_cache.get(host) if tasks: return tasks else: tasks = self._getPendingTasksForHost(host) self.host_cache[host] = tasks return tasks def _getPendingTasksForHost(self, host): try: h, hs, ips = socket.gethostbyname_ex(host) except Exception: h, hs, ips = host, [], [] tasks = sum((self.pendingTasksForHost.get(h, []) for h in [h] + hs + ips), []) st = {} for t in tasks: st[t] = st.get(t, 0) + 1 ts = sorted(list(st.items()), key=itemgetter(1), reverse=True) return [t for t, _ in ts] def _findTaskFromList(self, l, host, cpus, mem, gpus): for i in l: if self.launched[i] or self.finished[i]: continue if host in self.running_hosts[i]: continue t = self.tasks[i] if self.task_host_manager.task_failed_on_host(t.id, host): continue if t.cpus <= cpus + 1e-4 and t.mem <= mem and t.gpus <= gpus: return i def taskOffer(self, host_offers, cpus, mems, gpus): prefer_list = [] for host in host_offers: i, o = host_offers[host] local_task = self._findTaskFromList( self._getPendingTasksForHostWithCache(host), host, cpus[i], mems[i], gpus[i]) if local_task is not None: result_tuple = self._try_update_task_offer(local_task, i, o, cpus, mems, gpus) if result_tuple is None: continue prefer_list.append(result_tuple) if prefer_list: return prefer_list for idx in range(len(self.tasks)): if not self.launched[idx] and not self.finished[idx]: i, o = self.task_host_manager.offer_choice(self.tasks[idx].id, host_offers, self.running_hosts[idx]) if i is None: continue result_tuple = self._try_update_task_offer(idx, i, o, cpus, mems, gpus) if result_tuple: return [result_tuple] return [] def _try_update_task_offer(self, task_idx, i, o, cpus, mem, gpus): t = self.tasks[task_idx] if t.cpus <= cpus[i] + 1e-4 and t.mem <= mem[i] and t.gpus <= gpus[i]: t.status = TaskState.staging t.host = o.hostname t.try_next() self.id_retry_host[(t.id, t.num_try)] = o.hostname logger.debug('Starting task %s on slave %s', t.try_id, o.hostname) self.tidToIndex[t.id] = task_idx self.launched[task_idx] = True self.counter.launched += 1 self.running_hosts[task_idx].append(o.hostname) host_set = set(self.tasks[task_idx].preferredLocations()) if o.hostname in host_set: self.task_local_set.add(t.id) return i, o, t return None def statusUpdate(self, task_id, num_try, status, reason=None, message=None, result=None, update=None, stats=None): logger.debug('taskset status update %s, status %s, reason %s', task_id, status, reason) if task_id not in self.tidToIndex: logger.error('invalid task_id: %s, status %s, reason %s', task_id, status, reason) return i = self.tidToIndex[task_id] task = self.tasks[i] task.update_status(status, num_try) if self.finished[i]: if status == TaskState.finished: logger.debug('Task %s is already finished, ignore it', task_id) return # when checking, task been masked as not launched if not self.launched[i]: self.launched[i] = True self.counter.launched += 1 if status == TaskState.running: task.start_time = time.time() self.max_stage_time = max(self.max_stage_time, task.start_time - task.stage_time) elif status == TaskState.finished: if stats: self.mem_digest.add(stats.bytes_max_rss / (1024. ** 2)) if task.tries[num_try].reason in (TaskReason.run_timeout, TaskReason.stage_timeout): logger.warning("task timeout works: try %s finshed. History: %s", num_try, ". ".join(map(str, task.tries.values()))) self._task_finished(task_id, num_try, result, update, stats) else: # failed, killed, lost, error self._task_lost(task_id, num_try, status, reason, message, exception=result) def progress(self, ending=''): n = self.counter.n ratio = self.counter.finished * 1. / n bar = make_progress_bar(ratio) if self.counter.finished: elasped = time.time() - self.start_time avg = self.total_time_used / self.counter.finished eta = (n - self.counter.finished) * elasped / self.counter.finished m, s = divmod(int(eta), 60) h, m = divmod(m, 60) tmpl = 'taskset:%4s {{GREEN}}%s{{RESET}}%5.1f%% (% {width}s/% {width}s) ETA:% 2d:%02d:%02d AVG:%.1fs\x1b[K%s' fmt = tmpl.format(width=int(math.log10(self.counter.n)) + 1) msg = fmt % ( self.id, bar, ratio * 100, self.counter.finished, n, h, m, s, avg, ending ) msg = msg.ljust(80) logger.info(msg) else: tmpl = 'taskset:%4s {{GREEN}}%s{{RESET}}%5.1f%% (% {width}s/% {width}s) ETA:--:--:-- AVG:N/A\x1b[K%s' fmt = tmpl.format(width=int(math.log10(self.counter.n)) + 1) msg = fmt % (self.id, bar, ratio * 100, self.counter.finished, n, ending) msg = msg.ljust(80) logger.info(msg) def _task_finished(self, task_id, num_try, result, update, stats): i = self.tidToIndex[task_id] self.finished[i] = True self.counter.finished += 1 task = self.tasks[i] hostname = self.id_retry_host[(task.id, num_try)] \ if (task.id, num_try) in self.id_retry_host else task.host task.time_used += time.time() - task.start_time self.total_time_used += task.time_used self.max_task_time = max(self.max_task_time, task.time_used) if getattr(self.sched, 'color', False): title = 'taskset %s: task %s finished in %.1fs (%d/%d) ' % ( self.id, task_id, task.time_used, self.counter.finished, self.counter.n) msg = '\x1b]2;%s\x07\x1b[1A' % title logger.info(msg) self.sched.taskEnded(task, TaskEndReason.success, result, update, stats) self.running_hosts[i] = [] self.task_host_manager.task_succeed(task.id, hostname, TaskEndReason.success) for t in range(task.num_try): if t + 1 != num_try: self.sched.killTask(task.id, t + 1) if self.counter.finished == self.counter.n: ts = [t.time_used for t in self.tasks] num_try = [t.num_try for t in self.tasks] elasped = time.time() - self.start_time logger.info('taskset %s finished in %.1fs: min=%.1fs, ' 'avg=%.1fs, max=%.1fs, maxtry=%d, speedup=%.1f, local=%.1f%%', self.id, elasped, min(ts), sum(ts) / len(ts), max(ts), max(num_try), self.total_time_used / elasped, len(self.task_local_set) * 100. / len(self.tasks) ) self.sched.tasksetFinished(self) def _task_lost(self, task_id, num_try, status, reason, message, exception=None): index = self.tidToIndex[task_id] task = self.tasks[index] if reason == TaskEndReason.fetch_failed and self.numFailures[index] >= 1: self.counter.fail_fetch += 1 logger.warning('Cancel task %s after fetch fail twice from %s', task_id, exception.serverUri) self.sched.taskEnded(self.tasks[index], reason, exception, None) # cancel tasks if not self.finished[index]: self.finished[index] = True self.counter.finished += 1 for i in range(len(self.finished)): if not self.launched[i]: self.launched[i] = True self.counter.launched += 1 self.finished[i] = True self.counter.finished += 1 if self.counter.finished == self.counter.n: self.sched.tasksetFinished(self) # cancel taskset return hostname = self.id_retry_host[(task.id, num_try)] \ if (task.id, num_try) in self.id_retry_host else task.host abort = (self.numFailures[index] >= MAX_TASK_FAILURES) if TaskEndReason.maybe_oom(reason): self.counter.fail_oom += 1 task.mem = min(task.mem * 2, MAX_TASK_MEMORY) logger.info("task %s oom, enlarge memory limit to %d, origin %d", task.id, task.mem, task.rdd.mem) mem90 = self.mem_digest.quantile(0.9) if not math.isnan(mem90): mem90 = int(mem90) if mem90 > self.mem90: logger.info("enlarge memory limit of remaining task from >%d to >%d (mem90)", self.mem90, mem90) self.mem90 = mem90 for i, t in enumerate(self.tasks): if not self.launched[i]: t.mem = max(mem90, t.mem) else: _logger = logger.error if abort else logger.warning err_msg_simple = '{} id: {}, host: {}, reason: {}'.format(status, task.id, hostname, reason) err_msg = "{} message: {}".format(err_msg_simple, message) if status == TaskState.failed: if reason is not None: # for tests with master=local if reason.startswith("FATAL_EXCEPTION"): self._abort('Job abort without retry for {}.'.format(reason)) if reason not in self.reasons: self.reasons.add(reason) elif not abort: err_msg = err_msg_simple _logger(err_msg) self.counter.fail_all += 1 self.numFailures[index] += 1 if abort: self._abort('Task %s failed more than %d times' % (self.tasks[index].id, MAX_TASK_FAILURES)) task.reason_next = "fail" self.task_host_manager.task_failed(task.id, hostname, reason) self.launched[index] = False if self.counter.launched == self.counter.n: self.sched.requestMoreResources() self.running_hosts[index] = [] self.counter.launched -= 1 def check_task_timeout(self): """In lock, so be fast!""" now = time.time() if self.last_check + 5 > now: return False self.last_check = now n = self.launched.count(True) if n != self.counter.launched: logger.warning( 'bug: counter.launched(%d) != %d', self.counter.launched, n) self.counter.launched = n # staged but not run for too long # mesos may be busy. num_resubmit = 0 for i in range(self.counter.n): task = self.tasks[i] if (self.launched[i] and task.status == TaskState.staging and task.stage_time + self.max_stage_time + WAIT_FOR_RUNNING < now): logger.warning('task %s staging timeout %.1f (at %s), re-assign it', task.id, now - task.stage_time, task.host) self.counter.fail_staging_timeout += 1 task.reason_next = TaskReason.stage_timeout self.launched[i] = False self.counter.launched -= 1 num_resubmit += 1 if num_resubmit > 3: break # running for too long num_resubmit = 0 if self.counter.finished > self.counter.n * 0.8: scale = 1.0 * self.counter.n / self.counter.finished tasks = sorted((task.start_time, i, task) for i, task in enumerate(self.tasks) if self.launched[i] and not self.finished[i] and task.status == TaskState.running) for _t, idx, task in tasks: time_used = now - task.start_time if time_used > self.max_task_time * (4 ** task.num_try) * scale: # num_try starts from 1 # re-submit timeout task self.counter.fail_run_timeout += 1 if task.num_try <= MAX_TASK_FAILURES: logger.info('re-submit task %s for run timeout %.1f, max finished = %d, try %d', task.id, time_used, int(self.max_task_time), task.num_try) task.time_used += time_used task.stage_time = 0 task.start_time = 0 self.launched[idx] = False self.counter.launched -= 1 task.reason_next = TaskReason.run_timeout else: logger.error('task %s timeout, aborting taskset %s', task, self.id) self._abort('task %s timeout' % task) else: break num_resubmit += 1 if num_resubmit > 3: break return self.counter.launched < n def _abort(self, message): logger.error('abort the taskset: %s', message) tasks = ' '.join(str(i) for i in range(len(self.finished)) if not self.finished[i]) logger.error('not finished tasks: %s', tasks) self.failed = True self.causeOfFailure = message self.sched.tasksetFinished(self) self.sched.abort()
def test_empty(): digest = TDigest() q = random.random() assert isnan(digest.quantile(q))
class TaskSet(object): """ A TaskSet runs a set of tasks of a Stage with retry. - Task_id seen by TaskSet not include task.num_try - Each task try four times before abort. - Enlarge task.mem if fail for OOM. - Retry for lagging tasks. """ def __init__(self, sched, tasks, cpus=1, mem=100, gpus=0, task_host_manager=None): self.start = time.time() self.sched = sched self.tasks = tasks self.id = tasks[0].taskset_id self.ttids = set() for t in self.tasks: t.status = None t.num_try = 0 t.time_used = 0 t.cpus = cpus t.mem = mem t.gpus = gpus self.launched = [False] * len(tasks) self.finished = [False] * len(tasks) self.numFailures = [0] * len(tasks) self.running_hosts = [[] for _ in range(len(tasks))] self.tidToIndex = {} self.numTasks = len(tasks) self.tasksLaunched = 0 self.tasksFinished = 0 self.total_time_used = 0 self.lastPreferredLaunchTime = time.time() self.pendingTasksForHost = {} self.pendingTasksWithNoPrefs = [] self.allPendingTasks = [] self.reasons = set() self.failed = False self.causeOfFailure = '' self.last_check = 0 for i in range(len(tasks)): self._addPendingTask(i) self.host_cache = {} self.task_host_manager = task_host_manager if task_host_manager is not None \ else TaskHostManager() self.id_retry_host = {} self.task_local_set = set() self.mem_digest = TDigest() self.mem90 = 0 # TODO: move to stage @property def taskEverageTime(self): if not self.tasksFinished: return 10 return max(self.total_time_used / self.tasksFinished, 5) def _addPendingTask(self, i): loc = self.tasks[i].preferredLocations() if not loc: self.pendingTasksWithNoPrefs.append(i) else: for host in loc: self.pendingTasksForHost.setdefault(host, []).append(i) self.allPendingTasks.append(i) def _getPendingTasksForHostWithCache(self, host): tasks = self.host_cache.get(host) if tasks: return tasks else: tasks = self._getPendingTasksForHost(host) self.host_cache[host] = tasks return tasks def _getPendingTasksForHost(self, host): try: h, hs, ips = socket.gethostbyname_ex(host) except Exception: h, hs, ips = host, [], [] tasks = sum( (self.pendingTasksForHost.get(h, []) for h in [h] + hs + ips), []) st = {} for t in tasks: st[t] = st.get(t, 0) + 1 ts = sorted(list(st.items()), key=itemgetter(1), reverse=True) return [t for t, _ in ts] def _findTaskFromList(self, l, host, cpus, mem, gpus): for i in l: if self.launched[i] or self.finished[i]: continue if host in self.running_hosts[i]: continue t = self.tasks[i] if self.task_host_manager.task_failed_on_host(t.id, host): continue if t.cpus <= cpus + 1e-4 and t.mem <= mem and t.gpus <= gpus: return i def taskOffer(self, host_offers, cpus, mems, gpus): prefer_list = [] for host in host_offers: i, o = host_offers[host] local_task = self._findTaskFromList( self._getPendingTasksForHostWithCache(host), host, cpus[i], mems[i], gpus[i]) if local_task is not None: result_tuple = self._try_update_task_offer( local_task, i, o, cpus, mems, gpus) if result_tuple is None: continue prefer_list.append(result_tuple) if prefer_list: return prefer_list for idx in range(len(self.tasks)): if not self.launched[idx] and not self.finished[idx]: i, o = self.task_host_manager.offer_choice( self.tasks[idx].id, host_offers, self.running_hosts[idx]) if i is None: continue result_tuple = self._try_update_task_offer( idx, i, o, cpus, mems, gpus) if result_tuple: return [result_tuple] return [] def _try_update_task_offer(self, task_idx, i, o, cpus, mem, gpus): t = self.tasks[task_idx] if t.cpus <= cpus[i] + 1e-4 and t.mem <= mem[i] and t.gpus <= gpus[i]: t.status = 'TASK_STAGING' t.start = time.time() t.host = o.hostname t.num_try += 1 self.id_retry_host[(t.id, t.num_try)] = o.hostname logger.debug('Starting task %s on slave %s', t.try_id, o.hostname) self.tidToIndex[t.id] = task_idx self.launched[task_idx] = True self.tasksLaunched += 1 self.running_hosts[task_idx].append(o.hostname) host_set = set(self.tasks[task_idx].preferredLocations()) if o.hostname in host_set: self.task_local_set.add(t.id) return i, o, t return None def statusUpdate(self, task_id, num_try, status, reason=None, result=None, update=None, stats=None): logger.debug('taskset status update %s, status %s, reason %s', task_id, status, reason) if task_id not in self.tidToIndex: logger.error('invalid task_id: %s, status %s, reason %s', task_id, status, reason) return i = self.tidToIndex[task_id] if self.finished[i]: if status == 'TASK_FINISHED': logger.debug('Task %s is already finished, ignore it', task_id) return task = self.tasks[i] task.status = status # when checking, task been masked as not launched if not self.launched[i]: self.launched[i] = True self.tasksLaunched += 1 if status == 'TASK_FINISHED': self._task_finished(task_id, num_try, result, update, stats) elif status in ('TASK_LOST', 'TASK_FAILED', 'TASK_KILLED'): self._task_lost(task_id, num_try, status, reason) task.start = time.time() if stats: self.mem_digest.add(stats.bytes_max_rss / (1024.**2)) def progress(self, ending=''): n = self.numTasks ratio = self.tasksFinished * 1. / n bar = make_progress_bar(ratio) if self.tasksFinished: elasped = time.time() - self.start avg = self.total_time_used / self.tasksFinished eta = (n - self.tasksFinished) * elasped / self.tasksFinished m, s = divmod(int(eta), 60) h, m = divmod(m, 60) tmpl = 'taskset:%4s {{GREEN}}%s{{RESET}}%5.1f%% (% {width}s/% {width}s) ETA:% 2d:%02d:%02d AVG:%.1fs\x1b[K%s' fmt = tmpl.format(width=int(math.log10(self.numTasks)) + 1) msg = fmt % (self.id, bar, ratio * 100, self.tasksFinished, n, h, m, s, avg, ending) msg = msg.ljust(80) logger.info(msg) else: tmpl = 'taskset:%4s {{GREEN}}%s{{RESET}}%5.1f%% (% {width}s/% {width}s) ETA:--:--:-- AVG:N/A\x1b[K%s' fmt = tmpl.format(width=int(math.log10(self.numTasks)) + 1) msg = fmt % (self.id, bar, ratio * 100, self.tasksFinished, n, ending) msg = msg.ljust(80) logger.info(msg) def _task_finished(self, task_id, num_try, result, update, stats): i = self.tidToIndex[task_id] self.finished[i] = True self.tasksFinished += 1 task = self.tasks[i] hostname = self.id_retry_host[(task.id, num_try)] \ if (task.id, num_try) in self.id_retry_host else task.host task.time_used += time.time() - task.start self.total_time_used += task.time_used if getattr(self.sched, 'color', False): title = 'taskset %s: task %s finished in %.1fs (%d/%d) ' % ( self.id, task_id, task.time_used, self.tasksFinished, self.numTasks) msg = '\x1b]2;%s\x07\x1b[1A' % title logger.info(msg) from dpark.schedule import Success self.sched.taskEnded(task, Success(), result, update, stats) self.running_hosts[i] = [] self.task_host_manager.task_succeed(task.id, hostname, Success()) for t in range(task.num_try): if t + 1 != num_try: self.sched.killTask(task.id, t + 1) if self.tasksFinished == self.numTasks: ts = [t.time_used for t in self.tasks] num_try = [t.num_try for t in self.tasks] elasped = time.time() - self.start logger.info( 'taskset %s finished in %.1fs: min=%.1fs, ' 'avg=%.1fs, max=%.1fs, maxtry=%d, speedup=%.1f, local=%.1f%%', self.id, elasped, min(ts), sum(ts) / len(ts), max(ts), max(num_try), self.total_time_used / elasped, len(self.task_local_set) * 100. / len(self.tasks)) self.sched.tasksetFinished(self) def _task_lost(self, task_id, num_try, status, reason): index = self.tidToIndex[task_id] from dpark.schedule import FetchFailed if isinstance(reason, FetchFailed) and self.numFailures[index] >= 1: logger.warning('Cancel task %s after fetch fail twice from %s', task_id, reason.serverUri) self.sched.taskEnded(self.tasks[index], reason, None, None) # cancel tasks if not self.finished[index]: self.finished[index] = True self.tasksFinished += 1 for i in range(len(self.finished)): if not self.launched[i]: self.launched[i] = True self.tasksLaunched += 1 self.finished[i] = True self.tasksFinished += 1 if self.tasksFinished == self.numTasks: self.sched.tasksetFinished(self) # cancel taskset return task = self.tasks[index] hostname = self.id_retry_host[(task.id, num_try)] \ if (task.id, num_try) in self.id_retry_host else task.host if status == 'TASK_KILLED' or str(reason).startswith( 'Memory limit exceeded:'): task.mem = min(task.mem * 2, MAX_TASK_MEMORY) logger.info("task %s oom, enlarge memory limit to %d, origin %d", task.id, task.mem, task.rdd.mem) mem90 = self.mem_digest.quantile(0.9) if not math.isnan(mem90): mem90 = int(mem90) if mem90 > self.mem90: logger.info( "enlarge memory limit of remaining task from >%d to >%d (mem90)", self.mem90, mem90) self.mem90 = mem90 for i, t in enumerate(self.tasks): if not self.launched[i]: t.mem = max(mem90, t.mem) elif status == 'TASK_FAILED': _logger = logger.error if self.numFailures[index] == MAX_TASK_FAILURES \ else logger.warning if reason not in self.reasons: _logger('task %s failed @ %s: %s : %s', task.id, hostname, task, reason) self.reasons.add(reason) else: _logger('task %s failed @ %s: %s', task.id, hostname, task) elif status == 'TASK_LOST': logger.warning('Lost Task %s try %s at %s, reason %s', task_id, num_try, task.host, reason) self.numFailures[index] += 1 if self.numFailures[index] > MAX_TASK_FAILURES: logger.error('Task %s failed more than %d times; aborting taskset', self.tasks[index].id, MAX_TASK_FAILURES) self._abort('Task %s failed more than %d times' % (self.tasks[index].id, MAX_TASK_FAILURES)) self.task_host_manager.task_failed(task.id, hostname, reason) self.launched[index] = False if self.tasksLaunched == self.numTasks: self.sched.requestMoreResources() self.running_hosts[index] = [] self.tasksLaunched -= 1 def check_task_timeout(self): now = time.time() if self.last_check + 5 > now: return False self.last_check = now n = self.launched.count(True) if n != self.tasksLaunched: logger.warning('bug: tasksLaunched(%d) != %d', self.tasksLaunched, n) self.tasksLaunched = n for i in range(self.numTasks): task = self.tasks[i] if (self.launched[i] and task.status == 'TASK_STAGING' and task.start + WAIT_FOR_RUNNING < now): logger.info('task %s timeout %.1f (at %s), re-assign it', task.id, now - task.start, task.host) self.launched[i] = False self.tasksLaunched -= 1 if self.tasksFinished > self.numTasks * 2.0 / 3: scale = 1.0 * self.numTasks / self.tasksFinished avg = max(self.taskEverageTime, 10) tasks = sorted((task.start, i, task) for i, task in enumerate(self.tasks) if self.launched[i] and not self.finished[i]) for _t, idx, task in tasks: time_used = now - task.start if time_used > avg * (2**task.num_try) * scale: # re-submit timeout task if task.num_try <= MAX_TASK_FAILURES: logger.info( 're-submit task %s for timeout %.1f, ' 'try %d', task.id, time_used, task.num_try) task.time_used += time_used task.start = now self.launched[idx] = False self.tasksLaunched -= 1 else: logger.error('task %s timeout, aborting taskset %s', task, self.id) self._abort('task %s timeout' % task) else: break return self.tasksLaunched < n def _abort(self, message): logger.error('abort the taskset: %s', message) tasks = ' '.join( str(i) for i in range(len(self.finished)) if not self.finished[i]) logger.error('not finished tasks: %s', tasks) self.failed = True self.causeOfFailure = message self.sched.tasksetFinished(self) self.sched.abort()