Пример #1
0
def worker(data, pname, que, lock, is_train, mean, std):
    p = OutputPipe(pname, buffer_size=200)
    worker_id = int(que.get())
    que.put(worker_id + 1)
    add_rand_seed_entropy(worker_id)
    add_rand_seed_entropy(pname)
    np.random.seed(stable_rand_seed(worker))
    with control(io=[p]):
        while True:
            #np.random.set_state(que.get())
            idx = np.random.randint(len(data[0]))
            x, y = np.random.randint(9, size=2)
            flag = np.random.randint(2)
            #que.put(np.random.get_state())
            #que.put((int(idx) + 1) % len(data[0]))
            img = np.array(data[0][int(idx)])
            img = img.astype(np.float32)
            img = (img - mean) / std
            img = np.resize(img, (3, 32, 32))
            #img = (img - 128) / 256
            if is_train:
                img = augment(img, x, y)
                if flag == 1:
                    img = img[:, :, ::-1]
                    print("reversed")
            #a = msgpack.packb([img, data[1][int(idx)]], default = m.encode)
            #b = msgpack.unpackb(a, object_hook = m.decode)
            #print(np.array(b[0]).shape, b[1])
            p.put_pyobj([np.array(img), int(data[1][int(idx)])])
            print("put {} data {} successfully".format({
                True: "train",
                False: "valid"
            }[is_train], int(idx)))
Пример #2
0
def _get_dataset_mean_var(data, func, i):
	total_mean = None
	total_Esqr = None

	p = InputPipe("lyy.CIFAR10.train", buffer_size = 1000)
	with control(io = [p]):
		data = get_minibatch(p, 30)
		output = func(data = data["data"])
	
	total_mean = output[int(i) * 2].mean(axis = 0)
	total_Esqr = output[int(i) * 2 + 1].mean(axis = 0)

	return total_mean, total_Esqr - total_mean**2
Пример #3
0
def worker(data, pname, que, lock, is_train, mean, std):
    p = OutputPipe(pname, buffer_size=200)
    worker_id = int(que.get())
    que.put(worker_id + 1)
    add_rand_seed_entropy(worker_id)
    add_rand_seed_entropy(pname)
    np.random.seed(stable_rand_seed(worker))
    with control(io=[p]):
        while True:
            #np.random.set_state(que.get())
            idx = np.random.randint(len(data[0]))
            x, y = np.random.randint(9, size=2)
            flag = np.random.randint(2)
            #que.put(np.random.get_state())
            #que.put((int(idx) + 1) % len(data[0]))
            img = np.array(data[0][int(idx)])
            img = img.astype(np.float32)
            img = (img - mean) / std
            img = np.resize(img, (3, 32, 32))
            #img = (img - 128) / 256
            if is_train:
                img = augment(img, x, y)
                if flag == 1:
                    img = img[:, :, ::-1]
                    print("reversed")
            imgs = [img]
            patch_size = 32
            l = int(patch_size * 0.8)
            s = [[0, l], [patch_size - l, patch_size]]
            for i in range(4):
                xx = s[i % 2]
                yy = s[i // 2]
                for j in range(3):
                    fmap = img[j]
                    fmap = fmap[xx[0]:xx[1], yy[0]:yy[1]]
                    fmap = cv2.resize(fmap, (patch_size, patch_size))
                    imgs.append([fmap])
            img = np.concatenate(imgs, axis=0)
            #print(img[0])
            #print(img[3])
            #a = msgpack.packb([img, data[1][int(idx)]], default = m.encode)
            #b = msgpack.unpackb(a, object_hook = m.decode)
            #print(np.array(b[0]).shape, b[1])
            p.put_pyobj([np.array(img), int(data[1][int(idx)])])
            print("put {} data {} successfully".format({
                True: "train",
                False: "valid"
            }[is_train], int(idx)))
Пример #4
0
def worker():
    #add_rand_seed_entropy(worker_id)
    np.random.seed(int(time.time() * 100000 % 1000000))

    fetcher = DataFetcher(is_train=True)

    addr = datafeed_addr('train')
    q = OutputPipe(addr, buffer_size=100)

    with control(io=[q]):
        logger.info('started worker')
        while True:
            img, label = fetcher.load(True)
            img_aug = Augmentor.process(img)
            # msgdata cannot serialize float32
            label = int(label)
            img_aug = img_aug.astype(np.uint8)
            data = {'img': img_aug, 'label': [label]}
            q.put_pyobj(data)
            #        print('putted')
            sys.stdout.flush()
Пример #5
0
                                          train_func.optimizer_state)

        tr_p = InputPipe("lyy.CIFAR10.train", buffer_size=1000)
        va_p = InputPipe("lyy.CIFAR10.valid", buffer_size=1000)
        epoch = 0
        EPOCH_NUM = 49500 // minibatch_size
        i = 0
        max_acc = 0
        ORI_IT = 64000
        BN_IT = 10000
        TOT_IT = ORI_IT + BN_IT

        his = []
        his_test = []
        import time
        with control(io=[tr_p]):
            with control(io=[va_p]):

                a = time.time()
                while i <= TOT_IT:
                    i += 1

                    token1 = time.time()
                    data = get_minibatch(tr_p, minibatch_size)
                    time_data = time.time() - token1

                    token2 = time.time()
                    out = train_func(data=data['data'], label=data["label"])
                    time_train = time.time() - token2
                    if time_data > (time_train + time_data) * 0.1:
                        print(time_data / (time_train + time_data))
Пример #6
0
from dpflow import control, OutputPipe

q = OutputPipe("lyy-pipe-test", buffer_size = 100)

with control(io = [q]):
	epoc = 0
	while True:
		q.put_pyobj(epoc)
		print(epoc)
		epoc += 1

Пример #7
0
from dpflow import InputPipe, control

p = InputPipe("lyy-pipe-test", buffer_size = 100)

with control(io = [p]):
	for i in range(100):
		print(p.get())