def draw_regularisation_histograms( h_truth, h_measured, h_response, h_fakes = None, h_data = None ):
    global method, variable, output_folder, output_formats, test
    k_max = h_measured.nbins()
    unfolding = Unfolding( h_truth,
                           h_measured,
                           h_response,
                           h_fakes,
                           method = method,
                           k_value = k_max,
                           error_treatment = 4,
                           verbose = 1 )
    
    RMSerror, MeanResiduals, RMSresiduals, Chi2 = unfolding.test_regularisation ( h_data, k_max )

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'chi2_%s_channel_%s' % ( channel, variable )
    histogram_properties.title = '$\chi^2$ for $%s$ in %s channel, %s test' % ( variables_latex[variable], channel, test )
    histogram_properties.x_axis_title = '$i$'
    histogram_properties.y_axis_title = '$\chi^2$'
    histogram_properties.set_log_y = True
    make_plot(Chi2, 'chi2', histogram_properties, output_folder, output_formats, draw_errorbar = True, draw_legend = False)

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'RMS_error_%s_channel_%s' % ( channel, variable )
    histogram_properties.title = 'Mean error for $%s$ in %s channel, %s test' % ( variables_latex[variable], channel, test )
    histogram_properties.x_axis_title = '$i$'
    histogram_properties.y_axis_title = 'Mean error'
    make_plot(RMSerror, 'RMS', histogram_properties, output_folder, output_formats, draw_errorbar = True, draw_legend = False)

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'RMS_residuals_%s_channel_%s' % ( channel, variable )
    histogram_properties.title = 'RMS of residuals for $%s$ in %s channel, %s test' % ( variables_latex[variable], channel, test )
    histogram_properties.x_axis_title = '$i$'
    histogram_properties.y_axis_title = 'RMS of residuals'
    if test == 'closure':
        histogram_properties.set_log_y = True
    make_plot(RMSresiduals, 'RMSresiduals', histogram_properties, output_folder, output_formats, draw_errorbar = True, draw_legend = False)

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'mean_residuals_%s_channel_%s' % ( channel, variable )
    histogram_properties.title = 'Mean of residuals for $%s$ in %s channel, %s test' % ( variables_latex[variable], channel, test )
    histogram_properties.x_axis_title = '$i$'
    histogram_properties.y_axis_title = 'Mean of residuals'
    make_plot(MeanResiduals, 'MeanRes', histogram_properties, output_folder, output_formats, draw_errorbar = True, draw_legend = False)
Пример #2
0
    # We want to store this variable in a histogram
    # 80 bins, from 0 to 400 (GeV)
    h_gen_met = Hist(80, 0, 400)
    # since we are planning to run over many events, let's cache the fill function
    fill = h_gen_met.Fill
    # ready to read all events
    n_processed_events = 0
    stop_at = 10**5  # this is enough for this example
    for event in chain:
        gen_met = event.__getattr__("unfolding.genMET")
        fill(gen_met)
        n_processed_events += 1
        if (n_processed_events % 50000 == 0):
            print 'Processed', n_processed_events, 'events.'
        if n_processed_events >= stop_at:
            break

    print 'Processed', n_processed_events, 'events.'
    # lets draw this histogram
    # define the style
    histogram_properties = Histogram_properties()
    histogram_properties.name = 'read_ntuples_gen_met'  # it will be saved as that
    histogram_properties.title = 'My awesome MET plot'
    histogram_properties.x_axis_title = 'MET [GeV]'
    histogram_properties.y_axis_title = 'Events / 5 GeV'
    make_plot(h_gen_met,
              r'$t\bar{t}$',
              histogram_properties,
              save_folder='examples/plots/',
              save_as=['png'])
    
    # We want to store this variable in a histogram
    # 80 bins, from 0 to 400 (GeV)
    h_gen_met = Hist(80, 0, 400)
    # since we are planning to run over many events, let's cache the fill function
    fill = h_gen_met.Fill
    # ready to read all events
    n_processed_events = 0 
    stop_at = 10**5 # this is enough for this example
    for event in chain:
        gen_met = event.__getattr__("unfolding.genMET")
        fill(gen_met)
        n_processed_events += 1
        if (n_processed_events % 50000 == 0):
            print 'Processed', n_processed_events, 'events.'
        if n_processed_events >= stop_at:
            break
            
    print 'Processed', n_processed_events, 'events.'    
    # lets draw this histogram
    # define the style
    histogram_properties = Histogram_properties()
    histogram_properties.name = 'read_ntuples_gen_met' # it will be saved as that
    histogram_properties.title = 'My awesome MET plot'
    histogram_properties.x_axis_title = 'MET [GeV]'
    histogram_properties.y_axis_title = 'Events / 5 GeV'
    make_plot(h_gen_met, r'$t\bar{t}$', histogram_properties, 
              save_folder = 'examples/plots/', 
              save_as = ['png'])