Пример #1
0
    def __init__(self, env, hyper_params, batch_size, update_steps, memory_size, beta, model_replace_freq,
                 learning_rate, use_target_model=True, memory=Memory_Server, action_space=2,
                 training_episodes=7000, test_interval=50):
        # super().__init__(update_steps, memory_size, model_replace_freq, learning_rate, beta=0.99, batch_size = 32, use_target_model=True)
        self.batch_size = batch_size

        state = env.reset()
        input_len = len(state)
        output_len = action_space
        self.eval_model = DQNModel(input_len, output_len, learning_rate=0.0003)
        self.target_model = DQNModel(input_len, output_len)
        self.steps = 0
        self.memory = memory
        # self.memory = ReplayBuffer(hyper_params['memory_size'])
        self.prev = 0
        self.next = 0
        self.model_dq = deque()
        self.result = [0] * ((training_episodes // test_interval) + 1)
        self.previous_q_networks = []
        self.result_count = 0
        self.learning_episodes = training_episodes
        self.episode = 0
        self.is_collection_completed = False
        self.evaluator_done = False
        self.batch_num = training_episodes // test_interval
        self.use_target_model = True
        self.beta = 0.99
        self.test_interval = test_interval
    def __init__(self, env, hyper_params, memory, action_space):
        self.epsilon_decay_steps = hyper_params['epsilon_decay_steps']
        self.final_epsilon = hyper_params['final_epsilon']
        self.batch_size = hyper_params['batch_size']
        self.update_steps = hyper_params['update_steps']
        self.beta = hyper_params['beta']
        self.model_replace_freq = hyper_params['model_replace_freq']
        self.learning_rate = hyper_params['learning_rate']
        self.training_episodes = hyper_params['training_episodes']
        self.test_interval = hyper_params['test_interval']
        self.memory = memory

        self.episode = 0
        self.steps = 0
        self.result_count = 0
        self.next = 0
        self.batch_num = self.training_episodes // self.test_interval

        state = env.reset()
        input_len = len(state)
        output_len = action_space
        self.eval_model = DQNModel(input_len, output_len, learning_rate=hyper_params['learning_rate'])
        self.target_model = DQNModel(input_len, output_len)

        self.results = [0] * (self.batch_num + 1)
        self.previous_q_networks = []

        self.collector_done = False
        self.evaluator_done = False
Пример #3
0
    def __init__(self, env, hyper_params, action_space=len(ACTION_DICT)):

        self.env = env
        self.max_episode_steps = env._max_episode_steps

        self.beta = hyper_params['beta']
        self.initial_epsilon = 1
        self.final_epsilon = hyper_params['final_epsilon']
        self.epsilon_decay_steps = hyper_params['epsilon_decay_steps']

        self.episode = 0
        self.steps = 0
        self.best_reward = 0
        self.learning = True
        self.action_space = action_space

        state = env.reset()
        input_len = len(state)
        output_len = action_space
        self.eval_model = DQNModel(input_len,
                                   output_len,
                                   learning_rate=hyper_params['learning_rate'])
        self.use_target_model = hyper_params['use_target_model']
        if self.use_target_model:
            self.target_model = DQNModel(input_len, output_len)

        self.memory = ReplayBuffer(hyper_params['memory_size'])

        self.batch_size = hyper_params['batch_size']
        self.update_steps = hyper_params['update_steps']
        self.model_replace_freq = hyper_params['model_replace_freq']
Пример #4
0
def train(environment, starting_model_path=None, episodes=15000):
    if starting_model_path:
        policy_model = DQNModel.load(starting_model_path)
        target_model = DQNModel.load(starting_model_path)
        print('loaded model {}'.format(starting_model_path))
    else:
        print('starting model from scratch')
        policy_model = DQNModel()
        target_model = DQNModel()
        target_model.set_weights(policy_model.get_weights())

    print('Begin training...')
    replay_memory = []
    epsilon = 0.0

    for episode_i in range(episodes):
        replay_memory += play_out_episode(policy_model, environment, epsilon)
        replay_memory = replay_memory[-hparams['max_mem_size']:]

        epsilon = max(hparams['min_epsilon'], epsilon*hparams['epsilon_decay'])
        if len(replay_memory) >= hparams['min_mem_size']:
            do_training_step(policy_model, target_model, random.sample(replay_memory, hparams['batch_size']))

        if episode_i % hparams['target_model_update_every'] == 0:
            target_model.set_weights(policy_model.get_weights())
        if episode_i % hparams['evaluation_every'] == 0:
            info = evaluate_model(policy_model, environment)
            print('===================== episode {}, epsilon {}'.format(episode_i, epsilon))
            print(info)
            print('======================================')
            policy_model.save('checkpoint-{}'.format(episode_i))
    def __init__(self, env, hyper_params, action_space=len(ACTION_DICT)):

        self.env = env
        self.max_episode_steps = env._max_episode_steps
        """
            beta: The discounted factor of Q-value function
            (epsilon): The explore or exploit policy epsilon.
            initial_epsilon: When the 'steps' is 0, the epsilon is initial_epsilon, 1
            final_epsilon: After the number of 'steps' reach 'epsilon_decay_steps',
                The epsilon set to the 'final_epsilon' determinately.
            epsilon_decay_steps: The epsilon will decrease linearly along with the steps from 0 to 'epsilon_decay_steps'.
        """
        self.beta = hyper_params['beta']
        self.initial_epsilon = 1
        self.final_epsilon = hyper_params['final_epsilon']
        self.epsilon_decay_steps = hyper_params['epsilon_decay_steps']
        """
            episode: Record training episode
            steps: Add 1 when predicting an action
            learning: The trigger of agent learning. It is on while training agent. It is off while testing agent.
            action_space: The action space of the current environment, e.g 2.
        """
        self.episode = 0
        self.steps = 0
        self.best_reward = 0
        self.learning = True
        self.action_space = action_space
        """
            input_len The input length of the neural network. It equals to the length of the state vector.
            output_len: The output length of the neural network. It is equal to the action space.
            eval_model: The model for predicting action for the agent.
            target_model: The model for calculating Q-value of next_state to update 'eval_model'.
            use_target_model: Trigger for turn 'target_model' on/off
        """
        state = env.reset()
        input_len = len(state)
        output_len = action_space
        self.eval_model = DQNModel(input_len,
                                   output_len,
                                   learning_rate=hyper_params['learning_rate'])
        self.use_target_model = hyper_params['use_target_model']
        if self.use_target_model:
            self.target_model = DQNModel(input_len, output_len)
#         memory: Store and sample experience replay.
        self.memory = ReplayBuffer(hyper_params['memory_size'])
        """
            batch_size: Mini batch size for training model.
            update_steps: The frequence of traning model
            model_replace_freq: The frequence of replacing 'target_model' by 'eval_model'
        """
        self.batch_size = hyper_params['batch_size']
        self.update_steps = hyper_params['update_steps']
        self.model_replace_freq = hyper_params['model_replace_freq']

        print("agent initialized")
    def learn_and_evaluate(self):
        workers_id = []
        batch_size = self.parms['training_episodes'] // self.parms['workers'][0]
        for _ in range(self.parms['workers'][0]):
            workers_id.append(collecting_worker.remote(self.env, self.model_server, self.memory_server, batch_size))

        all_results = []
        if self.parms['do_test']:
            eval_model = DQNModel(len(env.reset()), len(ACTION_DICT))
            learn_done, filedir = False, ""
            workers_num = self.parms['workers'][1]
            interval = self.parms['test_interval']//workers_num
            while not learn_done:
                filedir, learn_done = ray.get(self.memory_server.get_evaluate_filedir.remote())
                if not filedir:
                    continue
                eval_model.load(filedir)
                start_time, total_reward = time.time(), 0
                eval_workers = []
                for _ in range(workers_num):
                    eval_workers.append(evaluation_worker_test2.remote(self.env, self.memory_server, eval_model, interval))
                    
                avg_reward = sum(ray.get(eval_workers))/workers_num
                print(filedir, avg_reward, (time.time() - start_time))
                all_results.append(avg_reward)

        return all_results
Пример #7
0
    def __init__(self, env, memory, action_space=2, test_interval=50):

        self.collector_done = False
        self.evaluator_done = False

        self.env = env
        # self.max_episode_steps = env._max_episode_steps
        self.max_episode_steps = 200

        self.beta = hyperparams_CartPole['beta']
        self.initial_epsilon = 1
        self.final_epsilon = hyperparams_CartPole['final_epsilon']
        self.epsilon_decay_steps = hyperparams_CartPole['epsilon_decay_steps']
        self.batch_size = hyperparams_CartPole['batch_size']

        self.episode = 0
        self.steps = 0
        self.best_reward = 0
        self.learning = True
        self.action_space = action_space

        self.previous_q_models = []
        self.results = [0] * (self.batch_size + 1)
        self.reuslt_count = 0
        self.episode = 0
        self.test_interval = test_interval
        self.memory = memory

        state = env.reset()
        input_len = len(state)
        output_len = action_space

        self.eval_model = DQNModel(input_len, output_len, learning_rate=hyperparams_CartPole['learning_rate'])

        self.use_target_model = hyperparams_CartPole['use_target_model']
        if self.use_target_model:
            self.target_model = DQNModel(input_len, output_len)

        # #         memory: Store and sample experience replay.
        #         self.memory = ReplayBuffer(hyper_params['memory_size'])

        self.batch_size = hyperparams_CartPole['batch_size']
        self.update_steps = hyperparams_CartPole['update_steps']
        self.model_replace_freq = hyperparams_CartPole['model_replace_freq']
    def __init__(self, env, hyper_params, memory_server):
        """
            input_len The input length of the neural network. It equals to the length of the state vector.
            output_len: The output length of the neural network. It is equal to the action space.
            eval_model: The model for predicting action for the agent.
            target_model: The model for calculating Q-value of next_state to update 'eval_model'.
            use_target_model: Trigger for turn 'target_model' on/off
        """
        self.beta = hyper_params['beta']

        state = env.reset()
        action_space = len(ACTION_DICT)
        input_len = len(state)
        output_len = action_space
        self.eval_model = DQNModel(input_len,
                                   output_len,
                                   learning_rate=hyper_params['learning_rate'])
        self.use_target_model = hyper_params['use_target_model']
        if self.use_target_model:
            self.target_model = DQNModel(input_len, output_len)

        self.memory_server = memory_server
Пример #9
0
    def __init__(self,
                 learning_rate,
                 training_episodes,
                 memory,
                 env,
                 test_interval=50,
                 batch_size=32,
                 action_space=len(ACTION_DICT),
                 beta=0.99):

        self.env = env
        #self.max_episode_steps = env._max_episode_steps

        self.batch_num = training_episodes // test_interval
        self.steps = 0

        self.collector_done = False
        self.evaluator_done = False
        self.training_episodes = training_episodes
        self.episode = 0
        #self.esults = []
        self.batch_size = batch_size
        self.privous_q_model = []
        self.results = [0] * (self.batch_num + 1)
        self.result_count = 0
        self.memory = memory
        self.use_target_model = True

        state = env.reset()
        input_len = len(state)
        output_len = action_space
        self.eval_model = DQNModel(input_len, output_len, learning_rate=0.0003)
        self.target_model = DQNModel(input_len, output_len)

        self.batch_size = hyper_params['batch_size']
        self.update_steps = hyper_params['update_steps']
        self.model_replace_freq = hyper_params['model_replace_freq']
Пример #10
0
    def __init__(self,
                 hyper_params,
                 memory_server,
                 nb_agents,
                 nb_evaluators,
                 action_space=len(ACTION_DICT)):
        self.beta = hyper_params['beta']
        self.initial_epsilon = 1
        self.final_epsilon = hyper_params['final_epsilon']
        self.epsilon_decay_steps = hyper_params['epsilon_decay_steps']
        self.hyper_params = hyper_params
        self.update_steps = hyper_params['update_steps']
        self.model_replace_freq = hyper_params['model_replace_freq']
        self.action_space = action_space
        self.batch_size = hyper_params['batch_size']
        self.memory_server = memory_server
        self.nb_agents = nb_agents
        self.nb_evaluators = nb_evaluators
        env = CartPoleEnv()
        state = env.reset()
        input_len = len(state)
        output_len = action_space
        self.eval_model = DQNModel(input_len,
                                   output_len,
                                   learning_rate=hyper_params['learning_rate'])
        self.target_model = DQNModel(input_len, output_len)

        self.agents = [
            DQN_agent_remote.remote(CartPoleEnv(), memory_server, hyper_params,
                                    action_space, i) for i in range(nb_agents)
        ]
        self.evaluators = [
            EvalWorker.remote(self.eval_model, CartPoleEnv(),
                              hyper_params['max_episode_steps'],
                              hyper_params['eval_trials'], i)
            for i in range(nb_evaluators)
        ]
    def __init__(self, env, hyper_params, memo_server):
        self.memory_server = memo_server
        self.env = env
        self.max_episode_steps = env._max_episode_steps

        self.beta = hyper_params['beta']
        self.training_episodes = hyper_params['training_episodes']
        self.test_interval = hyper_params['test_interval']

        action_space = len(ACTION_DICT)
        self.episode = 0
        self.steps = 0
        self.best_reward = 0
        self.learning = True
        self.action_space = action_space

        state = env.reset()
        input_len = len(state)
        output_len = action_space
        self.eval_model = DQNModel(input_len, output_len, learning_rate=hyper_params['learning_rate'])
        self.use_target_model = hyper_params['use_target_model']
        if self.use_target_model:
            self.target_model = DQNModel(input_len, output_len)

        self.batch_size = hyper_params['batch_size']
        self.update_steps = hyper_params['update_steps']
        self.model_replace_freq = hyper_params['model_replace_freq']
        self.collector_done = False
        self.results = []

        self.initial_epsilon = 1
        self.final_epsilon = hyper_params['final_epsilon']
        self.epsilon_decay_steps = hyper_params['epsilon_decay_steps']
        self.replace_targe_cnt = 0
        self.epsilon = 1
        self.eval_models_seq = 1
def evaluation_worker(env, mem_server, trials):
    eval_model = DQNModel(len(env.reset()), len(ACTION_DICT))
    learn_done, filedir = False, ""
    while not learn_done:
        filedir, learn_done = ray.get(mem_server.get_evaluate_filedir.remote())
        if not filedir:
            continue
        eval_model.load(filedir)
        start_time, total_reward = time.time(), 0
        for _ in range(trials):
            state, done, steps = env.reset(), False, 0
            while steps < env._max_episode_steps and not done:
                steps += 1
                state, reward, done, _ = env.step(eval_model.predict(state))
                total_reward += reward
        mem_server.add_results.remote(total_reward / trials)
Пример #13
0
    def __init__(self, name):
        """
        :param name: name of the rl_component
        """
        # name of the rl_component
        self.name = name
        # True if the model was set up
        self.is_model_init = False
        # Service for communicating the activations
        self._get_activation_service = rospy.Service(
            name + 'GetActivation', GetActivation,
            self._get_activation_state_callback)
        # choose appropriate model
        self.model = DQNModel(self.name)

        # save the last state
        self.last_state = None
        # the dimensions of the model
        self.number_outputs = -1
        self.number_inputs = -1

        self._unregistered = False
        rospy.on_shutdown(
            self.unregister)  # cleanup hook also for saving the model.
Пример #14
0
def train_main(exp_prefix="",
               fc_units=[128, 64, 64],
               env_list=[],
               num_envs=10,
               num_obstacls_ratio=[0.2, 0.3, 0.3, 0.2],
               n_step=1,
               max_episodes=10000,
               max_steps=120,
               per_num_envs=8,
               replay_buffer_len=400,
               no_replay=False,
               batch_size=64,
               learning_rate=1e-4,
               epsilon_min=0.05,
               epsilon_max=0.10,
               gamma=0.98,
               without_map_info=False,
               save_interval=1000,
               show=False):
    # create envs
    if len(env_list) == 0:
        env_list = create_or_load_envs(num_envs, num_obstacls_ratio)
    # create model
    if without_map_info:
        state_dims = 2 + 1
    else:
        state_dims = 4 * (2 + 2) + 6 + 2 + 2
    act_dims = 5
    model = DQNModel(state_dims=state_dims,
                     act_dims=act_dims,
                     fc_units=fc_units)
    print("create model done")
    # optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
    optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
    # create replay buffer
    buffer = ReplayBuffer(replay_buffer_len)
    print("create buffer done")

    # construct save path suffix
    weight_dir = os.path.join("weights", exp_prefix)
    dir_util.mkpath(weight_dir)
    log_dir = os.path.join("logs", exp_prefix)
    dir_util.mkpath(log_dir)
    summary_writer = tf.summary.create_file_writer(log_dir)

    # run simulations
    mean_loss_vals = []
    mean_ep_rewards = []
    last_save_ep_idx = 0
    for ep in range(max_episodes // per_num_envs):
        if no_replay:
            buffer.clear()
        num_new_samples = 0
        ep_rewards = []
        # randomly select an env and run rollout
        envs = np.random.choice(env_list, size=(per_num_envs))
        env_indices = np.random.randint(len(env_list), size=(per_num_envs))
        for roll_idx, env_idx in enumerate(env_indices):
            env = env_list[env_idx]
            episode_index = ep * per_num_envs + roll_idx
            epsilon = epsilon_max - (
                epsilon_max - epsilon_min) / max_episodes * episode_index
            ship_state_trace, input_states, action_list, reward_list, done_list, is_random_act_list, qvals = run_one_episodes(
                env, model, epsilon, max_steps, without_map_info)
            # td_errors = (reward_list + qvals[1:] * gamma) - qvals[:-1]
            td_errors = get_n_step_estimated_qvals(reward_list, qvals[1:],
                                                   gamma, n_step) - qvals[:-1]
            buffer.add_items(input_states, action_list, reward_list, done_list,
                             td_errors)
            num_new_samples += len(input_states)
            ep_rewards.append(np.sum(reward_list))
            print(
                "episode {:4d}, env-{:03d}, epsilon: {:4.2f}, episode length: {:3d}, ep_reward: {:8.2f}"
                .format(episode_index, env_idx, epsilon, len(input_states),
                        np.sum(reward_list)))
            tot_ep_reward = np.sum(reward_list)
            avg_ep_reward = np.mean(reward_list)
            with summary_writer.as_default():
                tf.summary.scalar('tot_ep_reward_trn',
                                  tot_ep_reward,
                                  step=episode_index)
                tf.summary.scalar('avg_ep_reward_trn',
                                  avg_ep_reward,
                                  step=episode_index)
            if episode_index % 100 == 0:
                # run an evaluation
                (eval_ship_state_trace, eval_input_states, eval_action_list,
                 eval_reward_list, eval_done_list, eval_is_random_act_list,
                 eval_qval_list) = run_one_episodes(env, model, 0, max_steps,
                                                    without_map_info)
                # log episode reward
                with summary_writer.as_default():
                    eval_tot_ep_reward = np.sum(eval_reward_list)
                    eval_avg_ep_reward = np.mean(eval_reward_list)
                    tf.summary.scalar('tot_ep_reward_evl',
                                      eval_tot_ep_reward,
                                      step=episode_index)
                    tf.summary.scalar('avg_ep_reward_evl',
                                      eval_avg_ep_reward,
                                      step=episode_index)
                # eval the loss
                eval_states_curr = np.array(eval_input_states[:-1])
                eval_states_next = np.array(eval_input_states[1:])
                eval_qvals_next = model(eval_states_next,
                                        training=False).numpy()
                eval_qvals_next_max = np.amax(
                    eval_qvals_next, axis=1) * (1 - np.array(eval_done_list))
                eval_qvals_esti = get_n_step_estimated_qvals(
                    eval_reward_list, eval_qvals_next_max, gamma, n_step)
                # to tensor
                eval_states_curr = tf.convert_to_tensor(
                    eval_states_curr, tf.float32)
                eval_action_list_tf = tf.convert_to_tensor(eval_action_list)
                eval_qvals_esti = tf.convert_to_tensor(eval_qvals_esti,
                                                       tf.float32)
                # eval to get loss
                eval_loss = eval_step_v0(model, eval_states_curr,
                                         eval_action_list_tf,
                                         eval_qvals_esti).numpy()
                with summary_writer.as_default():
                    tf.summary.scalar('loss_evl',
                                      eval_loss,
                                      step=episode_index)
                # draw map and state trace
                env.show(eval_ship_state_trace,
                         np.sum(eval_reward_list),
                         eval_loss,
                         eval_action_list,
                         eval_is_random_act_list,
                         save_path="pictures",
                         prefix=exp_prefix,
                         count=episode_index)
        # run update
        avg_ep_reward = float(np.mean(ep_rewards))
        mean_ep_rewards.append(avg_ep_reward)
        curr_update_loss_vals = []
        if no_replay:
            num_updates = 1
        else:
            num_updates = max(
                1,
                min(num_new_samples, replay_buffer_len) // batch_size)
        for _ in range(num_updates):
            # get qvals of next states
            if no_replay:
                batch_size = max(1, int(num_new_samples *
                                        0.8))  # overwrite batch_size
            states_curr, states_next, actions, rewards, dones = buffer.sample(
                batch_size)
            states_next = tf.convert_to_tensor(states_next, tf.float32)
            qvals_next = model(states_next, training=False).numpy()
            qvals_next = np.amax(qvals_next, axis=1) * (1 - dones)
            qvals_esti = get_n_step_estimated_qvals(rewards, qvals_next, gamma,
                                                    n_step)
            # to tensor
            states_curr = tf.convert_to_tensor(states_curr, tf.float32)
            actions = tf.convert_to_tensor(actions)
            qvals_esti = tf.convert_to_tensor(qvals_esti, tf.float32)
            # do an update
            loss_trn = train_step_v0(model, optimizer, states_curr, actions,
                                     qvals_esti).numpy()
            with summary_writer.as_default():
                tf.summary.scalar('loss_trn', loss_trn, step=episode_index)
            curr_update_loss_vals.append(loss_trn)
            print("episode {:4d}, bs: {:4d}, loss_trn: {:6.2f}".format(
                episode_index, batch_size, loss_trn))
        mean_loss_vals.append(float(np.mean(curr_update_loss_vals)))

        # draw loss
        if ep > 0 and ep % 10 == 0:
            draw_vals(mean_ep_rewards,
                      mean_loss_vals,
                      per_num_envs,
                      exp_prefix=exp_prefix)
            # save to file for further use
            json.dump([mean_loss_vals, mean_ep_rewards],
                      open("logs/{}_logs_info.json".format(exp_prefix), "w"))

        # Save the weights using the `checkpoint_path` format
        if (episode_index - last_save_ep_idx) > save_interval:
            save_path = os.path.join(
                weight_dir, "weights_{:05d}.ckpt".format(episode_index))
            model.save_weights(save_path)
            last_save_ep_idx = episode_index
            print("episode-{}, save weights to: {}".format(
                episode_index, save_path))