Пример #1
0
def get_scaled_bboxes(filename, sf):
    bbox_filename = bbox_writer.get_bbox_filename(filename)
    bbox_path = os.path.join(os.path.dirname(filename), bbox_filename)
    bboxes_, classes = bbox_writer.read_bboxes(bbox_path)
    bboxes = drawing_utils.scale_bboxes(bboxes_, sf)

    return bboxes, classes
Пример #2
0
def save_frame(orig, frame, bboxes, classes, run_name, frame_count):
    # Scale the bboxes back down by original scale factor.
    # This gives us the tight bounding box for the object, rather than the one
    # which has been scaled for the tracker.
    bboxes = drawing_utils.scale_bboxes(bboxes, 1 / args.scale)

    frame_to_draw = orig.copy()
    drawing_utils.draw_bboxes(frame_to_draw, bboxes, classes)
    show_scaled("Saved Frame", frame_to_draw)

    cv2.imwrite(os.path.join(run_name, "%05d.png" % frame_count), orig)
    cv2.imwrite(os.path.join(run_name, "rect_%05d.png" % frame_count), frame)
    bbox_writer.write_bboxes(bboxes, classes,
                             os.path.join(run_name, "%05d.txt" % frame_count))
Пример #3
0
def showROI(bboxes, frame):
    scaled_bboxes = drawing_utils.scale_bboxes(bboxes, 1.2)

    h, w, _ = frame.shape

    for i, bbox in enumerate(scaled_bboxes):
        if bbox is None: continue

        # Grab the part that we care about.
        rounded_bbox = bbox.astype(int)
        top_left = rounded_bbox[:2]
        bottom_right = top_left + rounded_bbox[2:]
        xs = np.clip([top_left[0], bottom_right[0]], 0, w)
        ys = np.clip([top_left[1], bottom_right[1]], 0, h)

        roi = frame[ys[0]:ys[1], xs[0]:xs[1]]

        IMAGE_SIZE = 100
        roi_h, roi_w, _ = roi.shape
        sf = IMAGE_SIZE / min(roi_h, roi_w)
        roi = cv2.resize(roi, (0, 0), fx=sf, fy=sf)

        cv2.imshow("Image %d" % i, roi)
Пример #4
0
def refine_bboxes(bboxes, classes, frame, trackers):
    # Refine boxes and reinitialize trackers.
    # Boxes are refined to be as tight as possible to the object being tracked.
    # The tracker is then given the bbox which has been inflated by the original
    # scale factor, to preserve tracking quality.

    # Just in case the tracker is missing something, we scale even further to
    # determine our ROI.
    scaled_bboxes = drawing_utils.scale_bboxes(bboxes, 1.2)

    h, w, _ = frame.shape

    # Very much hard coded for our particular use case.
    for i, bbox in enumerate(scaled_bboxes):
        if bbox is None: continue

        # Grab the part that we care about.
        rounded_bbox = bbox.astype(int)
        top_left = rounded_bbox[:2]
        bottom_right = top_left + rounded_bbox[2:]
        xs = np.clip([top_left[0], bottom_right[0]], 0, w)
        ys = np.clip([top_left[1], bottom_right[1]], 0, h)

        roi = frame[ys[0]:ys[1], xs[0]:xs[1]]

        # Resize the roi to be a reasonable dimension to see
        # Make the smaller of the two dimensions a fixed size
        IMAGE_SIZE = 100
        roi_h, roi_w, _ = roi.shape
        sf = IMAGE_SIZE / min(roi_h, roi_w)
        roi = cv2.resize(roi, (0, 0), fx=sf, fy=sf)

        new_bbox = None
        cls = classes[i]
        if cls == 'w':
            # TODO: Tune parameters here, if necessary
            print("Refining white whiffle ball")
            gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)

            min_radius = IMAGE_SIZE // 4
            circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, dp=1,
                    minDist=IMAGE_SIZE/2, param1=30, param2=50,
                    minRadius=min_radius,
                    maxRadius=IMAGE_SIZE//2)
            if circles is None:
                print("NO CIRCLES DETECTED. UHHHH")
                continue

            # Find the biggest circle by area, aka biggest radius
            biggest_circle_index = np.argmax(circles[0, :, 2])
            biggest_circle = circles[0, biggest_circle_index]
            c = biggest_circle

            if (c[2] < min_radius):
                print("Got an invalid circle?")
                continue

            # draw the outer circle and a dot at the center
            cv2.circle(roi, (c[0], c[1]), c[2], (0, 255, 0), 2)
            cv2.circle(roi, (c[0], c[1]), 2, (0, 0, 255), 3)

            # Use the bounding box of the circle to reinitialize the tracker.
            new_bbox = np.array([c[0] - c[2], c[1] - c[2], 2 * c[2], 2 * c[2]])


        elif cls == 'c':
            print("Refining orange cube")
            hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
            hsv_blurred = cv2.GaussianBlur(hsv, (5, 5), 0)
            ret, thresh_h = cv2.threshold(hsv_blurred[:, :, 0], 30, 255,
                    cv2.THRESH_BINARY_INV)
            ret, thresh_s = cv2.threshold(hsv_blurred[:, :, 1], 0, 255,
                    cv2.THRESH_BINARY | cv2.THRESH_OTSU)
            mask = cv2.bitwise_and(thresh_h, thresh_s)


            # Clean up the mask a little
            kernel = np.ones((11,11),np.uint8)
            mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
            #  cv2.imshow("Opening", opening)


            roi = cv2.bitwise_and(roi, roi, mask=mask)
            print("made the roi from the mask")

            # Grab the bounding box from the mask
            conn_stats = cv2.connectedComponentsWithStats(mask, connectivity=4)
            retval, labels, stats, centroids = conn_stats

            # The stats tell us [top left, top right, width, height, area]
            # Find the label with the biggest area
            if len(stats) > 1: # Means we have a non-bg label
                biggest_label = np.argmax(stats[1:, -1]) + 1

                p1 = stats[biggest_label, :2]
                p2 = p1 + stats[biggest_label, 2:-1]
                cv2.rectangle(roi, tuple(p1.astype(int)), tuple(p2.astype(int)), color=(255, 0, 100))
                print("drew the rectangle")

                new_bbox = stats[biggest_label, :-1]

        cv2.imshow("Image %d" % i, roi)

        if new_bbox is None:
            continue

        print("New bounding box", new_bbox)
        new_bbox = new_bbox / sf # Unscale by the same amount we scaled
        new_bbox = np.array([*(top_left + new_bbox[:2]), *new_bbox[2:]])

        print("Replacing bbox %d" % i, rounded_bbox, new_bbox)

        # Scale the bbox by the proper scale factor
        new_bbox_scaled = drawing_utils.scale_bboxes([new_bbox], args.scale)
        new_bbox_scaled = clamp_bboxes(new_bbox_scaled, w, h)

        # Force the scaled bounding box to be inside the bounds of the image.
        #  if any(new_bbox < 0):
        #      input()


        print("Initializing tracker")
        # Apply the new scaled bbox to both the tracker and the saved ones
        new_tracker = init_trackers(args.tracker, frame, new_bbox_scaled)[0]
        trackers[i] = new_tracker
        bboxes[i] = new_bbox_scaled[0]
        print("new scaled bbox", bboxes[i])