def inverterLoopTanh(numInverters, numSolutions="all", a=-5.0): epsilon = 1e-14 start = time.time() vs = [] for i in range(numInverters): vs.append(Variable("v" + str(i))) allConstraints = [] # Store rambus oscillator constraints for i in range(numInverters): allConstraints.append(vs[i] >= -1) allConstraints.append(vs[i] <= 1) inputInd = i outputInd = (i + 1) % numInverters allConstraints.append(tanh(a * vs[inputInd]) - vs[outputInd] == 0.0) allSolutions = [] while True: if numSolutions != "all" and len(allSolutions) == numSolutions: break # Store constraints pruning search space so that # old hyperrectangles are not considered excludingConstraints = [] for solution in allSolutions: singleExcludingConstraints = [] for i in range(numInverters): singleExcludingConstraints.append(vs[i] < solution[i][0]) singleExcludingConstraints.append(vs[i] > solution[i][1]) excludingConstraints.append(singleExcludingConstraints) # Add all the rambus oscillator constraints f_sat = logical_and(*allConstraints) # Add constraints so that old hyperrectangles are not considered if len(excludingConstraints) > 0: for constraints in excludingConstraints: f_sat = logical_and(f_sat, logical_or(*constraints)) #print ("f_sat") #print (f_sat) result = CheckSatisfiability(f_sat, epsilon) #print (result) if result is None: break hyper = np.zeros((numInverters, 2)) for i in range(numInverters): hyper[i, :] = [ result[vs[i]].lb() - 2 * epsilon, result[vs[i]].ub() + 2 * epsilon ] #print ("hyper", hyper) allSolutions.append(hyper) print("num solutions found", len(allSolutions)) end = time.time() print("time taken", end - start) return allSolutions
def inverterTanh(inputVoltage, a=-5.0, numSolutions="all"): epsilon = 1e-14 start = time.time() outputVolt = Variable("outputVolt") allConstraints = [] allConstraints.append(outputVolt >= -1.0) allConstraints.append(outputVolt <= 1.0) allConstraints.append(tanh(a * inputVoltage) - outputVolt == 0) allSolutions = [] while True: if numSolutions != "all" and len(allSolutions) == numSolutions: break # Store constraints pruning search space so that # old hyperrectangles are not considered excludingConstraints = [] for solution in allSolutions: singleExcludingConstraints = [] singleExcludingConstraints.append(outputVolt < solution[0][0]) singleExcludingConstraints.append(outputVolt > solution[0][1]) excludingConstraints.append(singleExcludingConstraints) #print ("allConstraints") #print (allConstraints) f_sat = logical_and(*allConstraints) if len(excludingConstraints) > 0: for constraints in excludingConstraints: f_sat = logical_and(f_sat, logical_or(*constraints)) #print ("f_sat") #print (f_sat) result = CheckSatisfiability(f_sat, epsilon) #print (result) if result is None: break hyper = np.zeros((1, 2)) hyper[0, :] = [ result[outputVolt].lb() - 2 * epsilon, result[outputVolt].ub() + 2 * epsilon ] #print ("hyper", hyper) allSolutions.append(hyper) print("num solutions found", len(allSolutions)) end = time.time() print("time taken", end - start) return allSolutions
def test_functions_with_expression(self): self.assertEqual(str(abs(e_x)), "abs(x)") self.assertEqual(str(exp(e_x)), "exp(x)") self.assertEqual(str(sqrt(e_x)), "sqrt(x)") self.assertEqual(str(pow(e_x, e_y)), "pow(x, y)") self.assertEqual(str(sin(e_x)), "sin(x)") self.assertEqual(str(cos(e_x)), "cos(x)") self.assertEqual(str(tan(e_x)), "tan(x)") self.assertEqual(str(asin(e_x)), "asin(x)") self.assertEqual(str(acos(e_x)), "acos(x)") self.assertEqual(str(atan(e_x)), "atan(x)") self.assertEqual(str(atan2(e_x, e_y)), "atan2(x, y)") self.assertEqual(str(sinh(e_x)), "sinh(x)") self.assertEqual(str(cosh(e_x)), "cosh(x)") self.assertEqual(str(tanh(e_x)), "tanh(x)") self.assertEqual(str(min(e_x, e_y)), "min(x, y)") self.assertEqual(str(max(e_x, e_y)), "max(x, y)") self.assertEqual(str(if_then_else(e_x > e_y, e_x, e_y)), "(if (x > y) then x else y)")
def test_functions_with_variable(self): self.assertEqual(str(abs(x)), "abs(x)") self.assertEqual(str(exp(x)), "exp(x)") self.assertEqual(str(sqrt(x)), "sqrt(x)") self.assertEqual(str(pow(x, y)), "pow(x, y)") self.assertEqual(str(sin(x)), "sin(x)") self.assertEqual(str(cos(x)), "cos(x)") self.assertEqual(str(tan(x)), "tan(x)") self.assertEqual(str(asin(x)), "asin(x)") self.assertEqual(str(acos(x)), "acos(x)") self.assertEqual(str(atan(x)), "atan(x)") self.assertEqual(str(atan2(x, y)), "atan2(x, y)") self.assertEqual(str(sinh(x)), "sinh(x)") self.assertEqual(str(cosh(x)), "cosh(x)") self.assertEqual(str(tanh(x)), "tanh(x)") self.assertEqual(str(min(x, y)), "min(x, y)") self.assertEqual(str(max(x, y)), "max(x, y)") self.assertEqual(str(if_then_else(x > y, x, y)), "(if (x > y) then x else y)")
def test_functions_with_float(self): v_x = 1.0 v_y = 1.0 self.assertEqual(abs(v_x), math.fabs(v_x)) self.assertEqual(exp(v_x), math.exp(v_x)) self.assertEqual(sqrt(v_x), math.sqrt(v_x)) self.assertEqual(pow(v_x, v_y), v_x**v_y) self.assertEqual(sin(v_x), math.sin(v_x)) self.assertEqual(cos(v_x), math.cos(v_x)) self.assertEqual(tan(v_x), math.tan(v_x)) self.assertEqual(asin(v_x), math.asin(v_x)) self.assertEqual(acos(v_x), math.acos(v_x)) self.assertEqual(atan(v_x), math.atan(v_x)) self.assertEqual(atan2(v_x, v_y), math.atan2(v_x, v_y)) self.assertEqual(sinh(v_x), math.sinh(v_x)) self.assertEqual(cosh(v_x), math.cosh(v_x)) self.assertEqual(tanh(v_x), math.tanh(v_x)) self.assertEqual(min(v_x, v_y), min(v_x, v_y)) self.assertEqual(max(v_x, v_y), max(v_x, v_y)) self.assertEqual( if_then_else(Expression(v_x) > Expression(v_y), v_x, v_y), v_x if v_x > v_y else v_y)
def rambusOscillatorTanh(numStages, g_cc=0.5, numSolutions="all", a=-5.0): epsilon = 1e-14 start = time.time() g_fwd = 1.0 lenV = numStages * 2 vs = [] vfwds = [] vccs = [] for i in range(lenV): vs.append(Variable("v" + str(i))) vfwds.append(Variable("vfwd" + str(i))) vccs.append(Variable("vcc" + str(i))) allConstraints = [] # Store rambus oscillator constraints for i in range(lenV): allConstraints.append(vs[i] >= -1) allConstraints.append(vs[i] <= 1) fwdInd = (i - 1) % lenV ccInd = (i + lenV // 2) % lenV allConstraints.append(vfwds[i] == tanh(a * vs[fwdInd])) allConstraints.append(vccs[i] == tanh(a * vs[ccInd])) allConstraints.append(g_fwd * vfwds[i] + (-g_fwd - g_cc) * vs[i] + g_cc * vccs[i] == 0) allSolutions = [] while True: if numSolutions != "all" and len(allSolutions) == numSolutions: break # Store constraints pruning search space so that # old hyperrectangles are not considered excludingConstraints = [] for solution in allSolutions: singleExcludingConstraints = [] for i in range(lenV): singleExcludingConstraints.append(vs[i] < solution[i][0]) singleExcludingConstraints.append(vs[i] > solution[i][1]) excludingConstraints.append(singleExcludingConstraints) # Add all the rambus oscillator constraints f_sat = logical_and(*allConstraints) # Add constraints so that old hyperrectangles are not considered if len(excludingConstraints) > 0: for constraints in excludingConstraints: f_sat = logical_and(f_sat, logical_or(*constraints)) #print ("f_sat") #print (f_sat) result = CheckSatisfiability(f_sat, epsilon) #print (result) if result is None: break hyper = np.zeros((lenV, 2)) for i in range(lenV): hyper[i, :] = [ result[vs[i]].lb() - 2 * epsilon, result[vs[i]].ub() + 2 * epsilon ] #print ("hyper", hyper) allSolutions.append(hyper) print("num solutions found", len(allSolutions)) end = time.time() print("time taken", end - start) return allSolutions
def tanhDer(var, param): return (1 - tanh(var * param) * tanh(var * param)) * param