def test_board(): bumps = [Bump(-1, -1), Bump(0, 0), Bump(1, 3)] pedestrians = [Pedestrian(-1, -1), Pedestrian(0, 1), Pedestrian(1, 2)] headlight_range = 4 speed = 1 road = Road(headlight_range, Car(1, speed=speed), bumps + pedestrians) patient = road.board() assert patient.dtype == 'uint8' x_board = np.full([headlight_range + 1, road._stage_width], _byte(' '), dtype='uint8') x_board[:, 0] = _byte('|') x_board[:, -2] = _byte('|') x_board[:, 1] = _byte('d') x_board[:, -3] = _byte('d') x_board[-speed:, -1] = _byte('^') x_board[0, 1] = bumps[0].to_byte() x_board[1, 4] = bumps[0].to_byte() x_board[0, 2] = pedestrians[0].to_byte() x_board[1, 3] = pedestrians[0].to_byte() x_board[headlight_range, 1 + 1] = _byte('C') np.testing.assert_array_equal(patient, x_board)
def test_probabilities_error(): state = dg_road.LaneAndDitchRoad(headlight_range=3, car=Car(1, 1), obstacles=[Bump(-1, -1), Bump(-1, -1)]) probs = [p for (s, p) in state.successors(NO_OP)] assert sum(probs) == pytest.approx(1.0)
def test_no_collision_if_obstacle_is_under_car(): hr = 3 car = Car(2, 4) s = Road(headlight_range=hr, car=car, obstacles=[Bump(hr, 2)]) s_p = Road(headlight_range=hr, car=car, obstacles=[Bump(hr + 1, 2)]) num_collisions = s.count_obstacle_collisions( s_p, lambda obs: int(isinstance(obs, Bump))).pop() assert num_collisions == 0
def test_to_s(): bumps = [Bump(-1, -1), Bump(0, 0), Bump(1, 1)] pedestrians = [Pedestrian(-1, -1), Pedestrian(0, 1), Pedestrian(1, 0)] headlight_range = 4 speed = 1 patient = dg_road.LaneAndDitchRoad(headlight_range, Car(1, speed=speed), bumps + pedestrians).to_s() assert patient == '|bp| \n|pb| \n| d| \n| d| \n| C|^'
def test_to_s(): bumps = [Bump(-1, -1), Bump(0, 0), Bump(1, 3)] pedestrians = [Pedestrian(-1, -1), Pedestrian(0, 1), Pedestrian(1, 2)] headlight_range = 4 speed = 1 patient = Road(headlight_range, Car(1, speed=speed), bumps + pedestrians).to_s() assert patient == '|bp d| \n|d pb| \n|d d| \n|d d| \n|dC d|^'
def test_simple_collision(): hr = 3 car = Car(2, 4) s = Road(headlight_range=hr, car=car, obstacles=[Bump(-1, -1)]) s_p = Road(headlight_range=hr, car=car, obstacles=[Bump(hr, 2)]) num_collisions = s.count_obstacle_collisions( s_p, lambda obs: int(isinstance(obs, Bump))).pop() assert num_collisions == 1
def test_collision_if_car_changes_lanes_into_obstacle(): hr = 3 s = Road(headlight_range=hr, car=Car(2, 1), obstacles=[Bump(hr, 1)]) s_p = Road(headlight_range=hr, car=Car(1, 1), obstacles=[Bump(hr, 1)]) num_collisions = s.count_obstacle_collisions( s_p, lambda obs: int(isinstance(obs, Bump))).pop() assert num_collisions == 1 num_collisions = s_p.count_obstacle_collisions( s, lambda obs: int(isinstance(obs, Bump))).pop() assert num_collisions == 0
def test_collision_if_car_drives_at_full_speed(): hr = 3 s = Road(headlight_range=hr, car=Car(2, hr), obstacles=[Bump(hr + 1, 2)]) s_p = Road(headlight_range=hr, car=Car(2, hr), obstacles=[Bump(hr, 2)]) num_collisions = s.count_obstacle_collisions( s_p, lambda obs: int(isinstance(obs, Bump))).pop() assert num_collisions == 1 num_collisions = s_p.count_obstacle_collisions( s, lambda obs: int(isinstance(obs, Bump))).pop() assert num_collisions == 0
def test_no_collision_if_obstacle_is_removed_from_the_road(): hr = 3 car = Car(2, 4) s_p = dg_road.LaneAndDitchRoad(headlight_range=hr, car=car, obstacles=[Bump(-1, -1)]) s = dg_road.LaneAndDitchRoad(headlight_range=hr, car=car, obstacles=[Bump(hr, 2)]) num_collisions = s.count_obstacle_collisions( s_p, lambda obs: int(isinstance(obs, Bump))).pop() assert num_collisions == 0
def test_successor_function_with_identical_states(p): expected_probs = [ (1 - p)**2 ] + [2 * p * (1 - p) / 4] * 4 + [2 * p / 3.0 * p / 4.0] * 6 expected_probs = [ pytest.approx(prob) for prob in expected_probs if prob > 0 ] state = Road(headlight_range=3, car=Car(1, 1), obstacles=[ Bump(-1, -1, prob_of_appearing=p), Bump(-1, -1, prob_of_appearing=p) ]) probs = [p for (s, p) in state.successors(NO_OP)] assert sum(probs) == pytest.approx(1.0) assert probs == expected_probs
def test_layers(): bumps = [Bump(-1, -1), Bump(0, 0), Bump(1, 3)] pedestrians = [Pedestrian(-1, -1), Pedestrian(0, 1), Pedestrian(1, 2)] headlight_range = 4 speed = 1 patient = Road(headlight_range, Car(1, speed=speed), bumps + pedestrians).layers() assert len(patient) == 7 x_bump_layer = np.full([headlight_range + 1, 7], False) x_bump_layer[0, 1] = True x_bump_layer[1, 4] = True np.testing.assert_array_equal(patient[str(bumps[0])], x_bump_layer) x_pedestrian_layer = np.full([headlight_range + 1, 7], False) x_pedestrian_layer[0, 2] = True x_pedestrian_layer[1, 3] = True np.testing.assert_array_equal(patient[str(pedestrians[0])], x_pedestrian_layer) x_car_layer = np.full([headlight_range + 1, 7], False) x_car_layer[headlight_range, 1 + 1] = True np.testing.assert_array_equal(patient['C'], x_car_layer) x_wall_layer = np.full([headlight_range + 1, 7], False) x_wall_layer[:, 0] = True x_wall_layer[:, -2] = True np.testing.assert_array_equal(patient['|'], x_wall_layer) x_ditch_layer = np.full([headlight_range + 1, 7], False) x_ditch_layer[:, 1] = True x_ditch_layer[:, -3] = True np.testing.assert_array_equal(patient['d'], x_ditch_layer) x_speedometer_layer = np.full([headlight_range + 1, 7], False) x_speedometer_layer[-speed:, -1] = True np.testing.assert_array_equal(patient['^'], x_speedometer_layer) x_empty_layer = np.logical_not( np.logical_or( x_speedometer_layer, np.logical_or( x_ditch_layer, np.logical_or(np.logical_or(x_bump_layer, x_pedestrian_layer), np.logical_or(x_car_layer, x_wall_layer))))) np.testing.assert_array_equal(patient[' '], x_empty_layer)
def test_obstacles_outside_headlight_range_are_hidden(): bumps = [Bump(-1, 0)] headlight_range = 4 patient = Road(headlight_range, Car(1, 1), bumps).obstacle_layers() assert len(patient) == 1 x_bump_layer = np.full([headlight_range + 1, 7], False) np.testing.assert_array_equal(patient[str(bumps[0])], x_bump_layer)
def new_road(): if one_way: return dg_road.LaneAndDitchRoad( headlight_range, Car(0, 0), obstacles=[ Bump(-1, -1, prob_of_appearing=1.0), ], allowed_obstacle_appearance_columns=[{0, 1}], allow_crashing=allow_crashing) else: return dg_road.Road(headlight_range, Car(2, 0), obstacles=[ Bump(-1, -1, prob_of_appearing=1.0), ], allowed_obstacle_appearance_columns=[{0, 1}], allow_crashing=allow_crashing)
def new_road(headlight_range=3): return Road( headlight_range, Car(2, 0), obstacles=[ Bump(-1, -1, prob_of_appearing=0.16), Pedestrian(-1, -1, speed=1, prob_of_appearing=0.13) ], allowed_obstacle_appearance_columns=[{2}, {1}], allow_crashing=True)
def test_obstacle_layers(): bumps = [Bump(-1, -1), Bump(0, 0), Bump(1, 3)] pedestrians = [Pedestrian(-1, -1), Pedestrian(0, 1), Pedestrian(1, 2)] headlight_range = 4 patient = Road(headlight_range, Car(1, 1), bumps + pedestrians).obstacle_layers() assert len(patient) == 2 x_bump_layer = np.full([headlight_range + 1, 7], False) x_bump_layer[0, 1] = True x_bump_layer[1, 4] = True np.testing.assert_array_equal(patient[str(bumps[0])], x_bump_layer) x_pedestrian_layer = np.full([headlight_range + 1, 7], False) x_pedestrian_layer[0, 2] = True x_pedestrian_layer[1, 3] = True np.testing.assert_array_equal(patient[str(pedestrians[0])], x_pedestrian_layer)
def test_obstacle_appearance_prob(p): car_col = 0 s = dg_road.LaneAndDitchRoad(headlight_range=3, car=Car(col=car_col, speed=1), obstacles=[Bump(-1, -1, prob_of_appearing=p)], allowed_obstacle_appearance_columns=[{1}]) successors = [(sp.to_key(), prob) for sp, prob in s.successors(NO_OP)] if p < 1: assert len(successors) == 2 assert successors[0] == ((car_col, 1, frozenset()), 1.0 - p) else: assert len(successors) == 1 assert successors[int(p < 1) * 1] == ((car_col, 1, frozenset([('b', 0, 1, 0, 0)])), p) s = dg_road.LaneAndDitchRoad(headlight_range=3, car=Car(col=car_col, speed=1), obstacles=[ Bump(-1, -1, prob_of_appearing=p), Pedestrian(-1, -1, prob_of_appearing=p) ], allowed_obstacle_appearance_columns=[{0}, {1}]) successors = [(sp.to_key(), prob) for sp, prob in s.successors(NO_OP)] if p < 1: assert len(successors) == 4 assert successors[1] == ((car_col, 1, frozenset([('b', 0, 0, 0, 0)])), pytest.approx(p * (1 - p))) assert successors[2] == ((car_col, 1, frozenset([('p', 0, 1, 0, 0)])), pytest.approx(p * (1 - p))) assert successors[0] == ((car_col, 1, frozenset()), pytest.approx(1 - 2 * p * (1 - p) - p * p)) else: assert len(successors) == 1 assert successors[int(p < 1) * 3] == ((car_col, 1, frozenset([('b', 0, 0, 0, 0), ('p', 0, 1, 0, 0)])), pytest.approx(p * p))
def test_safety_information(): patient = Road(headlight_range=1, car=Car(2, 0), obstacles=[Bump(-1, -1)]) counts, state_indices = patient.safety_information() counts = np.array(counts) assert len(counts.shape) == 4 assert counts.shape[0] == len(state_indices) assert counts.shape[1] == len(ACTIONS) assert counts.shape[2] == len(state_indices) assert counts.shape[3] == 7
def test_to_key(): bumps = [Bump(0, 2)] headlight_range = 1 car = Car(2, 1) patient = Road(headlight_range, car, bumps).to_key() assert patient == (2, 1, frozenset([('b', 0, 2, 0, 0)])) obstacles = [ Bump(-1, 0), Bump(-1, -1), Bump(0, 2), Pedestrian(1, 1), Pedestrian(1, 2), Pedestrian(2, 3) ] headlight_range = 1 car = Car(2, 1) patient = Road(headlight_range, car, obstacles).to_key() assert patient == ( 2, 1, frozenset([('b', 0, 2, 0, 0), ('p', 1, 1, 0, 0), ('p', 1, 2, 0, 0)])) # yapf:disable
def test_to_key(): bumps = [Bump(0, 1)] headlight_range = 1 car = Car(col=0, speed=1) patient = dg_road.LaneAndDitchRoad(headlight_range, car, bumps).to_key() assert patient == (0, 1, frozenset([('b', 0, 1, 0, 0)])) obstacles = [ Bump(-1, 0), Bump(-1, -1), Bump(0, 1), Pedestrian(1, 1), Pedestrian(1, 0), Pedestrian(2, 0) ] headlight_range = 1 patient = dg_road.LaneAndDitchRoad(headlight_range, car, obstacles).to_key() assert patient == ( 0, 1, frozenset([('b', 0, 1, 0, 0), ('p', 1, 1, 0, 0), ('p', 1, 0, 0, 0)])) # yapf:disable
def test_tabulate_single_reward(): patient = Road(headlight_range=1, car=Car(2, 0), obstacles=[Bump(-1, -1)]) transitions, rewards, state_indices = patient.tabulate(dg_rewards.reward) transitions = np.array(transitions) rewards = np.array(rewards) assert len(transitions.shape) == 3 assert len(rewards.shape) == 2 assert transitions.shape[0] == len(state_indices) assert transitions.shape[0] == rewards.shape[0] assert transitions.shape[1] == rewards.shape[1] for t in transitions: for ta in t: assert sum(ta) == pytest.approx(1.0)
def simple_road_factory(headlight_range=5, num_bumps=3, num_pedestrians=3, speed=1, discount=0.99, bump_appearance_prob=0.2, pedestrian_appearance_prob=0.2, car_col=2): car = Car(car_col, speed) initial_bumps = [ Bump(-1, -1, prob_of_appearing=bump_appearance_prob) for _ in range(num_bumps) ] initial_pedestrians = [ Pedestrian(-1, -1, prob_of_appearing=pedestrian_appearance_prob) for _ in range(num_pedestrians) ] return Road(headlight_range, car, initial_bumps + initial_pedestrians)
def test_obstacles_cannot_appear_in_the_same_position(p): s = Road(headlight_range=3, car=Car(2, 1), obstacles=[ Bump(-1, -1, prob_of_appearing=p), Pedestrian(-1, -1, prob_of_appearing=p) ], allowed_obstacle_appearance_columns=[{1}, {1}]) successors = [(sp.to_key(), prob) for sp, prob in s.successors(NO_OP)] if p < 1: assert len(successors) == 3 assert successors[2] == ((2, 1, frozenset([('p', 0, 1, 0, 0)])), p * (1 - p)) assert successors[0] == ((2, 1, frozenset()), pytest.approx(1 - p - p * (1 - p))) else: assert len(successors) == 1 assert successors[int(p < 1) * 1] == ((2, 1, frozenset([('b', 0, 1, 0, 0) ])), p) assert sum(prob for _, prob in successors) == pytest.approx(1)
def test_car_speeds_up_if_obstacle_not_visible(): headlight_range = 4 obstacles = [Bump(headlight_range + 1, 2)] road = Road(headlight_range, Car(2, 2), obstacles) action_taken = hand_coded_data_gathering_policy(road) assert action_taken == UP
def test_single_bump_in_front_of_car(): obstacles = [Bump(3, 2)] headlight_range = 4 road = Road(headlight_range, Car(2, 1), obstacles) action_taken = hand_coded_data_gathering_policy(road) assert action_taken == LEFT
def test_obstacles_appear_over_dirt_and_pavement(col): bumps = [Bump(0, col)] headlight_range = 4 patient = Road(headlight_range, Car(2, 1), bumps).board() assert patient[0, col + 1] == bumps[0].to_byte()
def test_successor_probabilities(speed): state = Road(headlight_range=6, car=Car(1, speed), obstacles=[Bump(-1, -1)]) probs = [p for (s, p) in state.successors(UP)] assert sum(probs) == pytest.approx(1.0)
def test_two_adjacent_bumps(): headlight_range = 4 obstacles = [Bump(0, 1), Bump(0, 2)] road = Road(headlight_range, Car(2, 2), obstacles) action_taken = hand_coded_data_gathering_policy(road) assert action_taken == DOWN
from driving_gridworld.obstacles import Pedestrian from driving_gridworld.car import Car from driving_gridworld.actions import ACTIONS, RIGHT, LEFT, UP, DOWN, NO_OP import driving_gridworld.rewards as dg_rewards import pytest @pytest.mark.parametrize("action", ACTIONS) def test_transition_probs_without_obstacles_are_always_1(action): headlight_range = 4 patient = Road(headlight_range, Car(0, 1)) for next_state, prob in patient.successors(action): assert prob == 1.0 @pytest.mark.parametrize("obst", [Bump(0, 0), Pedestrian(0, 0)]) def test_no_obstacles_revealed_is_the_only_valid_set_of_revealed_obstacles_when_all_obstacles_already_on_road( obst): headlight_range = 2 road_test = Road(headlight_range, Car(1, 1), [obst]) patient = list(road_test.every_combination_of_revealed_obstacles(1)) assert patient == [{}] @pytest.mark.parametrize("obst", [Bump(0, 0), Pedestrian(0, 0)]) @pytest.mark.parametrize("action", ACTIONS) def test_transition_probs_with_one_obstacle_are_1(obst, action): headlight_range = 2 road_test = Road(headlight_range, Car(1, 1), [obst]) probs = [prob for next_state, prob in road_test.successors(action)] assert probs == [1.0]
def test_car_appears_over_dirt_and_pavement(col): bumps = [Bump(row=1, col=1)] headlight_range = 4 c = Car(col=col, speed=1) patient = dg_road.LaneAndDitchRoad(headlight_range, c, bumps).board() assert patient[headlight_range, col + 1] == c.to_byte()
def test_car_appears_over_dirt_and_pavement(col): bumps = [Bump(0, 2)] headlight_range = 4 c = Car(col, 1) patient = Road(headlight_range, c, bumps).board() assert patient[headlight_range, col + 1] == c.to_byte()