def __init__(self, state_dim, action_dim, max_action, args): # Mu stuff self.mu = Actor(state_dim, action_dim, max_action, args) self.mu_t = Actor(state_dim, action_dim, max_action, args) self.mu_t.load_state_dict(self.mu.state_dict()) # Sigma stuff self.log_sigma = FloatTensor( np.log(args.sigma_init) * np.ones(self.mu.get_size())) self.log_sigma_t = FloatTensor( np.log(args.sigma_init) * np.ones(self.mu.get_size())) # Optimizer self.opt = torch.optim.Adam(self.mu.parameters(), lr=args.actor_lr) self.opt.add_param_group({"params": self.log_sigma}) # Critic stuff self.critic = Critic(state_dim, action_dim, max_action, args) self.critic_t = Critic(state_dim, action_dim, max_action, args) self.critic_t.load_state_dict(self.critic.state_dict()) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=args.critic_lr) # Env stuff self.state_dim = state_dim self.action_dim = action_dim self.max_action = max_action # Hyperparams self.tau = args.tau self.n_steps = args.n_steps self.discount = args.discount self.pop_size = args.pop_size self.batch_size = args.batch_size self.noise_clip = args.noise_clip self.policy_freq = args.policy_freq self.policy_noise = args.policy_noise self.reward_scale = args.reward_scale self.n_actor_params = self.mu.get_size() self.weights = FloatTensor( [self.discount**i for i in range(self.n_steps)]) # cuda if USE_CUDA: self.mu.cuda() self.mu_t.cuda() self.log_sigma.cuda() self.log_sigma_t.cuda() self.critic.cuda() self.critic_t.cuda()
def __init__(self, state_dim, action_dim, max_action, args): # Actor stuff self.actor = GaussianActor(state_dim, action_dim, max_action, args) self.actor_t = GaussianActor(state_dim, action_dim, max_action, args) self.actor_t.load_state_dict(self.actor.state_dict()) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=args.actor_lr) # Critic stuff self.critic = Critic(state_dim, action_dim, max_action, args) self.critic_t = Critic(state_dim, action_dim, max_action, args) self.critic_t.load_state_dict(self.critic.state_dict()) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=args.critic_lr) # Value stuff self.value = Value(state_dim, action_dim, max_action, args) self.value_t = Value(state_dim, action_dim, max_action, args) self.value_t.load_state_dict(self.value.state_dict()) self.value_opt = torch.optim.Adam(self.value.parameters(), lr=args.critic_lr) # Env stuff self.state_dim = state_dim self.action_dim = action_dim self.max_action = max_action # Hyperparams self.tau = args.tau self.n_steps = args.n_steps self.discount = args.discount self.batch_size = args.batch_size self.noise_clip = args.noise_clip self.policy_freq = args.policy_freq self.policy_noise = args.policy_noise self.reward_scale = args.reward_scale self.weights = FloatTensor( [self.discount**i for i in range(self.n_steps)]) # cuda if args.use_cuda: self.actor.cuda() self.actor_t.cuda() self.critic.cuda() self.critic_t.cuda() self.value.cuda() self.value_t.cuda()
class Virel(object): """ VIREL-inspired Actor-Critic Algorithm: https://arxiv.org/abs/1811.01132 """ def __init__(self, state_dim, action_dim, max_action, args): # Actor stuff self.actor = GaussianActor(state_dim, action_dim, max_action, args) self.actor_t = GaussianActor(state_dim, action_dim, max_action, args) self.actor_t.load_state_dict(self.actor.state_dict()) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=args.actor_lr) # Critic stuff self.critic = Critic(state_dim, action_dim, max_action, args) self.critic_t = Critic(state_dim, action_dim, max_action, args) self.critic_t.load_state_dict(self.critic.state_dict()) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=args.critic_lr) # Value stuff self.value = Value(state_dim, action_dim, max_action, args) self.value_t = Value(state_dim, action_dim, max_action, args) self.value_t.load_state_dict(self.value.state_dict()) self.value_opt = torch.optim.Adam(self.value.parameters(), lr=args.critic_lr) # Env stuff self.state_dim = state_dim self.action_dim = action_dim self.max_action = max_action # Hyperparams self.tau = args.tau self.n_steps = args.n_steps self.discount = args.discount self.batch_size = args.batch_size self.noise_clip = args.noise_clip self.policy_freq = args.policy_freq self.policy_noise = args.policy_noise self.reward_scale = args.reward_scale self.weights = FloatTensor( [self.discount**i for i in range(self.n_steps)]) # cuda if args.use_cuda: self.actor.cuda() self.actor_t.cuda() self.critic.cuda() self.critic_t.cuda() self.value.cuda() self.value_t.cuda() def action(self, state): """ Returns action given state """ state = FloatTensor(state.reshape(1, -1)) action, mu, sigma = self.actor(state) # print("mu", mu) # print("sigma", sigma ** 2) return action.cpu().data.numpy().flatten() def train(self, memory, n_iter): """ Trains the model for n_iter steps """ for it in range(n_iter): # Sample replay buffer states, actions, n_states, rewards, steps, dones, stops = memory.sample( self.batch_size) rewards = self.reward_scale * rewards * self.weights rewards = rewards.sum(dim=1, keepdim=True) # Select action according to policy n_actions = self.actor_t(n_states)[0] # Q target = reward + discount * min_i(Qi(next_state, pi(next_state))) with torch.no_grad(): target_q1, target_q2 = self.critic_t(n_states, n_actions) target_q = torch.min(target_q1, target_q2) target_q = target_q * self.discount**(steps + 1) target_q = rewards + (1 - stops) * target_q # Get current Q estimates current_q1, current_q2 = self.critic(states, actions) # Compute critic loss critic_loss = nn.MSELoss()(current_q1, target_q) + nn.MSELoss()( current_q2, target_q) # Optimize the critic // M Step self.critic_opt.zero_grad() critic_loss.backward() self.critic_opt.step() # Delayed policy updates if it % self.policy_freq == 0: # actions, mus, sigmas actions, mus, sigmas = self.actor(states) # Compute actor loss with entropy actor_loss = -self.critic(states, actions)[0] actor_loss -= torch.log(sigmas**2).mean( dim=1, keepdim=True) * 5 # critic_loss.detach() actor_loss = actor_loss.mean() # Optimize the actor // E Steps self.actor_opt.zero_grad() actor_loss.backward() self.actor_opt.step() # Update the frozen actor models for param, target_param in zip(self.actor.parameters(), self.actor_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) # Update the frozen critic models for param, target_param in zip(self.critic.parameters(), self.critic_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) # Update the frozen value models for param, target_param in zip(self.value.parameters(), self.value_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def save(self, directory): """ Save the model in given folder """ self.actor.save_model(directory, "actor") self.critic.save_model(directory, "critic") def load(self, directory): """ Load model from folder """ self.actor.load_model(directory, "actor") self.critic.load_model(directory, "critic")
class D2TD3(object): """ Double-Smoothed Twin Delayed Deep Deterministic Policy Gradient Algorithm """ def __init__(self, state_dim, action_dim, max_action, args): # Mu stuff self.mu = Actor(state_dim, action_dim, max_action, args) self.mu_t = Actor(state_dim, action_dim, max_action, args) self.mu_t.load_state_dict(self.mu.state_dict()) # Sigma stuff self.log_sigma = FloatTensor( np.log(args.sigma_init) * np.ones(self.mu.get_size())) self.log_sigma_t = FloatTensor( np.log(args.sigma_init) * np.ones(self.mu.get_size())) # Optimizer self.opt = torch.optim.Adam(self.mu.parameters(), lr=args.actor_lr) self.opt.add_param_group({"params": self.log_sigma}) # Critic stuff self.critic = Critic(state_dim, action_dim, max_action, args) self.critic_t = Critic(state_dim, action_dim, max_action, args) self.critic_t.load_state_dict(self.critic.state_dict()) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=args.critic_lr) # Env stuff self.state_dim = state_dim self.action_dim = action_dim self.max_action = max_action # Hyperparams self.tau = args.tau self.n_steps = args.n_steps self.discount = args.discount self.pop_size = args.pop_size self.batch_size = args.batch_size self.noise_clip = args.noise_clip self.policy_freq = args.policy_freq self.policy_noise = args.policy_noise self.reward_scale = args.reward_scale self.n_actor_params = self.mu.get_size() self.weights = FloatTensor( [self.discount**i for i in range(self.n_steps)]) # cuda if USE_CUDA: self.mu.cuda() self.mu_t.cuda() self.log_sigma.cuda() self.log_sigma_t.cuda() self.critic.cuda() self.critic_t.cuda() def train(self, memory, n_iter): """ Trains the model for n_iter steps """ for it in range(n_iter): # Sample replay buffer states, actions, n_states, rewards, steps, dones, stops = memory.sample( self.batch_size) rewards = self.reward_scale * rewards * self.weights rewards = rewards.sum(dim=1, keepdim=True) # Select policy according to noise # mu_t = self.mu_t.get_params() # log_sigma_t = self.log_sigma_t.data.cpu().numpy() # noise = np.random.randn(self.n_actor_params) # pi_t = mu_t + noise * np.exp(log_sigma_t) # self.mu_t.set_params(pi_t) n_actions = self.mu_t(n_states) # self.mu.set_params(mu_t) # Q target = reward + discount * min_i(Qi(next_state, pi(next_state))) with torch.no_grad(): target_Q1, target_Q2 = self.critic_t(n_states, n_actions) target_Q = torch.min(target_Q1, target_Q2) target_Q = target_Q * self.discount**(steps + 1) target_Q = rewards + (1 - stops) * target_Q # Get current Q estimates current_Q1, current_Q2 = self.critic(states, actions) # Compute critic loss critic_loss = nn.MSELoss()(current_Q1, target_Q) + \ nn.MSELoss()(current_Q2, target_Q) # Optimize the critic self.critic_opt.zero_grad() critic_loss.backward() self.critic_opt.step() # Delayed policy updates if it % self.policy_freq == 0: # Creating random policy mu = self.mu.get_params() log_sigma = self.log_sigma.data.cpu().numpy() noise = np.random.randn(self.n_actor_params) pi = mu + noise * np.exp(log_sigma) # Computing loss self.mu.set_params(pi) pi_loss = -self.critic(states, self.mu(states))[0].mean() # Computing gradient wrt noisy policy pi_loss.backward() pi_grad = self.mu.get_grads() self.mu.set_params(mu) # Setting gradients self.opt.zero_grad() self.mu.set_params(mu) self.mu.set_grads(pi_grad) self.log_sigma.grad = FloatTensor(pi_grad * noise * np.exp(log_sigma)) self.opt.step() # Update the frozen mu for param, target_param in zip(self.mu.parameters(), self.mu_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) # Update the frozen sigma self.log_sigma_t = self.tau * self.log_sigma + \ (1 - self.tau) * self.log_sigma_t # Update the frozen critic models for param, target_param in zip(self.critic.parameters(), self.critic_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def save(self, directory): """ Save the model in given folder """ self.mu.save_model(directory, "actor") self.critic.save_model(directory, "critic") def load(self, directory): """ Load model from folder """ self.mu.load_model(directory, "actor") self.critic.load_model(directory, "critic")
class STD3(object): """ Smoothed Twin Delayed Deep Deterministic Policy Gradient Algorithm """ def __init__(self, state_dim, action_dim, max_action, args): # Actor stuff self.actor = Actor(state_dim, action_dim, max_action, args) self.actor_t = Actor(state_dim, action_dim, max_action, args) self.actor_t.load_state_dict(self.actor.state_dict()) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=args.actor_lr) # Critic stuff self.critic = Critic(state_dim, action_dim, max_action, args) self.critic_t = Critic(state_dim, action_dim, max_action, args) self.critic_t.load_state_dict(self.critic.state_dict()) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=args.critic_lr) # Env stuff self.state_dim = state_dim self.action_dim = action_dim self.max_action = max_action # Hyperparams self.tau = args.tau self.n_steps = args.n_steps self.discount = args.discount self.batch_size = args.batch_size self.noise_clip = args.noise_clip self.policy_freq = args.policy_freq self.policy_noise = args.policy_noise self.reward_scale = args.reward_scale self.weights = FloatTensor( [self.discount**i for i in range(self.n_steps)]) # cuda if args.use_cuda: self.actor.cuda() self.actor_t.cuda() self.critic.cuda() self.critic_t.cuda() def action(self, state): """ Returns action given state """ state = FloatTensor(state.reshape(1, -1)) return self.actor(state).cpu().data.numpy().flatten() def train(self, memory, n_iter): """ Trains the model for n_iter steps """ for it in range(n_iter): # Sample replay buffer states, actions, n_states, rewards, steps, dones, stops = memory.sample( self.batch_size) print("before:", rewards) rewards = self.reward_scale * rewards * self.weights rewards = rewards.sum(dim=1, keepdim=True) print("after:", rewards) # Select action according to policy and add clipped noise noise = np.clip( np.random.normal(0, self.policy_noise, size=(self.batch_size, self.action_dim)), -self.noise_clip, self.noise_clip) n_actions = self.actor_t(n_states) # + FloatTensor(noise) n_actions = n_actions.clamp(-self.max_action, self.max_action) # Q target = reward + discount * min_i(Qi(next_state, pi(next_state))) with torch.no_grad(): target_Q1, target_Q2 = self.critic_t(n_states, n_actions) target_Q = torch.min(target_Q1, target_Q2) target_Q = target_Q * self.discount**(steps + 1) target_Q = rewards.sum + (1 - stops) * target_Q # Get current Q estimates current_Q1, current_Q2 = self.critic(states, actions) # Compute critic loss critic_loss = nn.MSELoss()(current_Q1, target_Q) + \ nn.MSELoss()(current_Q2, target_Q) # Optimize the critic self.critic_opt.zero_grad() critic_loss.backward() self.critic_opt.step() # Delayed policy updates if it % self.policy_freq == 0: # Compute actor loss # noise = np.clip(np.random.normal(0, self.policy_noise, size=( # self.batch_size, self.action_dim)), -self.noise_clip, self.noise_clip) # n_actions = self.actor(states) + FloatTensor(noise) # n_actions = n_actions.clamp(-self.max_action, self.max_action) # actor_loss = -self.critic(states, n_actions)[0].mean() actor_params = self.actor.get_params() grads = np.zeros(self.actor.get_size()) for _ in range(5): noise = np.random.normal(0, self.policy_noise, size=(self.actor.get_size())) self.actor.set_params(actor_params + noise * self.policy_noise) n_actions = self.actor(states) # + FloatTensor(noise) n_actions = n_actions.clamp(-self.max_action, self.max_action) self.actor_opt.zero_grad() actor_loss = -self.critic(states, n_actions)[0].mean() actor_loss.backward() # * np.exp(- noise ** 2 / (2 * self.policy_noise ** 2) grads += self.actor.get_grads() # ) / np.sqrt(2 * np.pi) / self.policy_noise self.actor_opt.zero_grad() self.actor.set_params(actor_params) self.actor.set_grads(grads / 5) self.actor_opt.step() # Optimize the actor # self.actor_opt.zero_grad() # actor_loss.backward() # self.actor_opt.step() # Update the frozen actor models for param, target_param in zip(self.actor.parameters(), self.actor_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) # Update the frozen critic models for param, target_param in zip(self.critic.parameters(), self.critic_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def save(self, directory): """ Save the model in given folder """ self.actor.save_model(directory, "actor") self.critic.save_model(directory, "critic") def load(self, directory): """ Load model from folder """ self.actor.load_model(directory, "actor") self.critic.load_model(directory, "critic")
class NASTD3(object): """ Twin Delayed Deep Deterministic Policy Gradient Algorithm with n-step return """ def __init__(self, state_dim, action_dim, max_action, args): # Actor stuff self.actor = NASActor(state_dim, action_dim, max_action, args) self.actor_t = NASActor(state_dim, action_dim, max_action, args) self.actor_t.load_state_dict(self.actor.state_dict()) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=args.actor_lr) # Critic stuff self.critic = Critic(state_dim, action_dim, max_action, args) self.critic_t = Critic(state_dim, action_dim, max_action, args) self.critic_t.load_state_dict(self.critic.state_dict()) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=args.critic_lr) # Env stuff self.state_dim = state_dim self.action_dim = action_dim self.max_action = max_action # Hyperparams self.tau = args.tau self.n_steps = args.n_steps self.discount = args.discount self.batch_size = args.batch_size self.noise_clip = args.noise_clip self.policy_freq = args.policy_freq self.policy_noise = args.policy_noise self.reward_scale = args.reward_scale self.weights = FloatTensor( [self.discount**i for i in range(self.n_steps)]) # cuda if args.use_cuda: self.actor.cuda() self.actor_t.cuda() self.critic.cuda() self.critic_t.cuda() def action(self, state): """ Returns action given state """ state = FloatTensor(state.reshape(1, -1)) return self.actor(state).cpu().data.numpy().flatten() def train(self, memory, n_iter): """ Trains the model for n_iter steps """ critic_losses = [] actor_losses = [] for it in tqdm(range(n_iter)): # Sample replay buffer states, actions, n_states, rewards, steps, dones, stops = memory.sample( self.batch_size) rewards = self.reward_scale * rewards * self.weights rewards = rewards.sum(dim=1, keepdim=True) # Select action according to policy n_actions = self.actor_t(n_states) # Q target = reward + discount * min_i(Qi(next_state, pi(next_state))) with torch.no_grad(): target_q1, target_q2 = self.critic_t(n_states, n_actions) target_q = torch.min(target_q1, target_q2) target_q = rewards + (1 - stops) * target_q * self.discount**( steps + 1) # Get current Q estimates current_q1, current_q2 = self.critic(states, actions) # Compute critic loss critic_loss = nn.MSELoss()(current_q1, target_q) + \ nn.MSELoss()(current_q2, target_q) critic_losses.append(critic_loss.data.cpu().numpy()) # Optimize the critic self.critic_opt.zero_grad() critic_loss.backward() self.critic_opt.step() # Delayed policy updates if it % self.policy_freq == 0: # Compute actor loss actor_loss = -self.critic(states, self.actor(states))[0].mean() actor_losses.append(actor_loss.data.cpu().numpy()) # Optimize the actor self.actor_opt.zero_grad() actor_loss.backward() self.actor_opt.step() # Normalize alphas self.actor.normalize_alpha() self.actor_t.normalize_alpha() # Update the frozen actor models for param, target_param in zip(self.actor.parameters(), self.actor_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) # Update the frozen critic models for param, target_param in zip(self.critic.parameters(), self.critic_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) return np.mean(critic_losses), np.mean(actor_losses) def save(self, directory): """ Save the model in given folder """ self.actor.save_model(directory, "actor") self.critic.save_model(directory, "critic") def load(self, directory): """ Load model from folder """ self.actor.load_model(directory, "actor") self.critic.load_model(directory, "critic")
class MPO(object): """ MPO-inspired Actor-Critic Algorithm: https://arxiv.org/pdf/1806.06920.pdf """ def __init__(self, state_dim, action_dim, max_action, args): # Actor stuff self.pi = GaussianActor(state_dim, action_dim, max_action, args) self.pi_t = GaussianActor(state_dim, action_dim, max_action, args) self.pi_t.load_state_dict(self.pi.state_dict()) self.pi_opt = torch.optim.Adam(self.pi.parameters(), lr=args.actor_lr) # Variational policy stuff self.q = GaussianActor(state_dim, action_dim, max_action, args) self.q_t = GaussianActor(state_dim, action_dim, max_action, args) self.q.load_state_dict(self.pi.state_dict()) self.q_t.load_state_dict(self.pi.state_dict()) self.q_opt = torch.optim.Adam(self.q.parameters(), lr=args.actor_lr) # Critic stuff self.critic = Critic(state_dim, action_dim, max_action, args) self.critic_t = Critic(state_dim, action_dim, max_action, args) self.critic_t.load_state_dict(self.critic.state_dict()) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=args.critic_lr) # Env stuff self.state_dim = state_dim self.action_dim = action_dim self.max_action = max_action # Hyperparams self.tau = args.tau self.alpha = args.alpha self.n_steps = args.n_steps self.discount = args.discount self.batch_size = args.batch_size self.noise_clip = args.noise_clip self.policy_freq = args.policy_freq self.policy_noise = args.policy_noise self.reward_scale = args.reward_scale self.weights = FloatTensor( [self.discount**i for i in range(self.n_steps)]) # cuda if args.use_cuda: self.pi.cuda() self.pi_t.cuda() self.q.cuda() self.q_t.cuda() self.critic.cuda() self.critic_t.cuda() def action(self, state): """ Returns action given state """ state = FloatTensor(state.reshape(1, -1)) action, mu, sigma = self.pi(state) # print("mu", mu) # print("sigma", sigma) return action.cpu().data.numpy().flatten() def train(self, memory, n_iter): """ Trains the model for n_iter steps """ for it in range(n_iter): # Sample replay buffer states, actions, n_states, rewards, steps, dones, stops = memory.sample( self.batch_size) rewards = self.reward_scale * rewards * self.weights rewards = rewards.sum(dim=1, keepdim=True) # Select action according to policy pi n_actions = self.pi(n_states)[0] # Q target = reward + discount * min_i(Qi(next_state, pi(next_state))) with torch.no_grad(): target_q1, target_q2 = self.critic_t(n_states, n_actions) target_q = torch.min(target_q1, target_q2) target_q = target_q * self.discount**(steps + 1) target_q = rewards + (1 - stops) * target_q # Get current Q estimates current_q1, current_q2 = self.critic(states, actions) # Compute critic loss critic_loss = nn.MSELoss()(current_q1, target_q) + nn.MSELoss()( current_q2, target_q) # Optimize the critic self.critic_opt.zero_grad() critic_loss.backward() self.critic_opt.step() # E-Step # actions, mus, sigmas pi_a, pi_mus, pi_sigmas = self.pi(states) q_a, q_mus, q_sigmas = self.q(states) # KL div between pi and q kl_div = torch.log(pi_sigmas**2 / q_sigmas**2) kl_div += (q_sigmas**4 + (q_mus - pi_mus)**2) / (2 * pi_sigmas**4) kl_div = kl_div.mean(dim=1, keepdim=True) # q loss loss = self.critic(states, q_a)[0] - kl_div loss = -loss.mean() # SGD self.q_opt.zero_grad() self.pi_opt.zero_grad() loss.backward() self.q_opt.step() self.pi_opt.step() # M-Step # actions, mus, sigmas # pi_a, pi_mus, pi_sigmas = self.pi(states) # q_a, q_mus, q_sigmas = self.q(states) # q_a.detach(), q_mus.detach(), q_sigmas.detach() # # # KL div between pi and q # kl_div = torch.log(pi_sigmas ** 2 / q_sigmas ** 2) # kl_div += (q_sigmas ** 4 + (q_mus - pi_mus) ** 2) / \ # (2 * pi_sigmas ** 4) # kl_div = kl_div.mean(dim=1, keepdim=True) # # # pi_loss # pi_loss = kl_div.mean() # # # SGD # self.pi_opt.zero_grad() # pi_loss.backward() # torch.nn.utils.clip_grad_norm_(self.pi.parameters(), 1) # self.pi_opt.step() # print(pi_loss.data, loss.data) # Update the frozen actor models for param, target_param in zip(self.pi.parameters(), self.pi_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) # Update the frozen critic models for param, target_param in zip(self.critic.parameters(), self.critic_t.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def save(self, directory): """ Save the model in given folder """ self.pi.save_model(directory, "actor") self.critic.save_model(directory, "critic") def load(self, directory): """ Load model from folder """ self.pi.load_model(directory, "actor") self.critic.load_model(directory, "critic")