Пример #1
0
    def reset(self):
        # camera
        dronesim.installcamera([0,-15,180], 110, 63, 0.01, 500)

        # state related property
        position_hunter = [0.0, 0.0, 10.0] # x, y, z
        orientation_hunter = [0.0, 0.0, 0.0] # roll, pitch, taw

        #the position of target is generated randomly and should not exceed the vision range of hunter
        position_target = (np.array([10.0, 0.0, 10.0]) + np.random.normal(0, 5)).tolist() # x, y, z
        orientation_target = [0.0, 0.0, 0.0] # roll, pitch, yaw
        self.roll_target, self.pitch_target, self.yaw_target, self.thrust_target = 0, 0, 0, 0

        absolute_x, absolute_y, target_in_front = dronesim.projection(position_hunter, orientation_hunter, position_target, float(self.width), float(self.height)) 
        distance = np.linalg.norm(np.array(position_hunter) - np.array(position_target))
        # invalid initialization
        while (not target_in_front or absolute_x > self.max_absolute_x or absolute_x < self.min_absolute_x or absolute_y > self.max_absolute_y or absolute_y < self.min_absolute_y or distance > self.max_initial_distance or distance < self.min_initial_distance):
            position_target = (np.array([10.0, 0.0, 10.0]) + np.random.normal(0, 5)).tolist()
            absolute_x, absolute_y, target_in_front = dronesim.projection(position_hunter, orientation_hunter, position_target, float(self.width), float(self.height)) 
            distance = np.linalg.norm(np.array(position_hunter) - np.array(position_target))

        dronesim.siminit(np.squeeze(np.asarray(position_hunter)),np.squeeze(np.asarray(orientation_hunter)), \
                         np.squeeze(np.asarray(position_target)),np.squeeze(np.asarray(orientation_target)), 20, 5)
        
        self.init_pos_target = position_target

        self.previous_distance = distance
        self.state = self.get_state()

        self.iteration = 0
        self.episodes = 0

        return self.state
    def reset(self):
        # camera
        dronesim.installcamera([0, -15, 180], 110, 63, 0.01, 500)
        # state related property
        position_hunter = [0.0, 0.0, 10.0]  # x, y, z
        orientation_hunter = [0.0, 0.0, 0.0]  # roll, pitch, taw

        # position_hunter = np.matrix([44.41015975 -3.96066086  7.88967305])
        # orientation_hunter = np.matrix([-11.276222823141545, 8.627114153116235, 27.256829024182572])
        # position_target = np.matrix([17.49014858 -5.98676401 21.02755752])

        #the position of target is generated randomly and should not exceed the vision range of hunter
        position_target = (np.array([10.0, 0.0, 10.0]) +
                           np.random.normal(0, 5)).tolist()  # x, y, z
        orientation_target = [0.0, 0.0, 0.0]  # roll, pitch, yaw
        self.roll_target, self.pitch_target, self.yaw_target, self.thrust_target = 0, 0, 0, 0
        # print('error c')
        # print('lala: ', position_hunter, orientation_hunter, position_target, self.width, self.height)
        absolute_x, absolute_y, target_in_front = dronesim.projection(
            position_hunter, orientation_hunter, position_target,
            float(self.width), float(self.height))
        # print('position: ', position_hunter)
        # print('error e')
        # print('pos_hunter: ', position_hunter)
        # print('pos_target: ', position_target)
        distance = np.linalg.norm(
            np.array(position_hunter) - np.array(position_target))
        # invalid initialization
        # print('error d')
        while (not target_in_front or absolute_x > self.max_absolute_x
               or absolute_x < self.min_absolute_x
               or absolute_y > self.max_absolute_y
               or absolute_y < self.min_absolute_y
               or distance > self.max_initial_distance
               or distance < self.min_initial_distance):
            position_target = (np.array([10.0, 0.0, 10.0]) +
                               np.random.normal(0, 5)).tolist()
            absolute_x, absolute_y, target_in_front = dronesim.projection(
                position_hunter, orientation_hunter, position_target,
                float(self.width), float(self.height))
            distance = np.linalg.norm(
                np.array(position_hunter) - np.array(position_target))

        # print(position_hunter, orientation_hunter, position_target)

        # position_hunter = np.matrix([38.5, 26.8, 30.3])
        # orientation_hunter = np.matrix([20.5,12.9,84.9])
        # position_target = np.matrix([16.4,8.8,39.9])
        # print('error a')
        dronesim.siminit(np.squeeze(np.asarray(position_hunter)),np.squeeze(np.asarray(orientation_hunter)), \
                         np.squeeze(np.asarray(position_target)),np.squeeze(np.asarray(orientation_target)), 20, 5)
        # print('error b')
        self.previous_distance = distance
        self.state = self.get_state()

        self.iteration = 0
        self.episodes = 0

        return self.state
Пример #3
0
    def reset(self):
        # state related property
        position_hunter = np.matrix([0.0, 0.0, 10.0])  # x, y, z
        orientation_hunter = np.matrix([0.0, 0.0, 0.0])  # roll, pitch, taw

        #the position of target is generated randomly and should not exceed the vision range of hunter
        position_target = np.matrix([10.0, 0.0, 10.0]) + np.random.normal(
            0, 5)  # x, y, z
        orientation_target = np.matrix([0.0, 0.0, 0.0])  # roll, pitch, yaw

        (absolute_x, absolute_y), _ = projection(position_target,
                                                 position_hunter,
                                                 orientation_hunter,
                                                 w=float(self.width),
                                                 h=float(self.height))

        print('x,y: ', absolute_x, absolute_y)

        distance = np.linalg.norm(position_hunter - position_target)
        # invalid initialization
        while (absolute_x > self.max_absolute_x
               or absolute_x < self.min_absolute_x
               or absolute_y > self.max_absolute_y
               or absolute_y < self.min_absolute_y
               or distance > self.max_initial_distance
               or distance < self.min_initial_distance):
            position_target = np.matrix([10.0, 0.0, 10.0]) + np.random.normal(
                0, 5)
            (absolute_x, absolute_y), _ = projection(position_target,
                                                     position_hunter,
                                                     orientation_hunter,
                                                     w=float(self.width),
                                                     h=float(self.height))
            distance = np.linalg.norm(position_hunter - position_target)

        dronesim.siminit(np.squeeze(np.asarray(position_hunter)),np.squeeze(np.asarray(orientation_hunter)), \
                         np.squeeze(np.asarray(position_target)),np.squeeze(np.asarray(orientation_target)), 20, 10)

        self.previous_distance = distance
        self.state = self.get_state()

        self.iteration = 0
        self.episodes = 0

        return self.state