Пример #1
0
    def _prepocess_training_data(self, x, t, e, vsize, random_state):
        """RNNs require different preprocessing for variable length sequences"""

        idx = list(range(x.shape[0]))
        np.random.seed(random_state)
        np.random.shuffle(idx)

        x = _get_padded_features(x)
        t = _get_padded_targets(t)
        e = _get_padded_targets(e)

        x_train, t_train, e_train = x[idx], t[idx], e[idx]

        x_train = torch.from_numpy(x_train).double()
        t_train = torch.from_numpy(t_train).double()
        e_train = torch.from_numpy(e_train).double()

        vsize = int(vsize * x_train.shape[0])
        x_val, t_val, e_val = x_train[-vsize:], t_train[-vsize:], e_train[
            -vsize:]

        x_train = x_train[:-vsize]
        t_train = t_train[:-vsize]
        e_train = e_train[:-vsize]

        return (x_train, t_train, e_train, x_val, t_val, e_val)
Пример #2
0
	def _prepocess_training_data(self, x, t, e, vsize, val_data, random_state):
		"""RNNs require different preprocessing for variable length sequences"""

		idx = list(range(x.shape[0]))
		np.random.seed(random_state)
		np.random.shuffle(idx)

		x = _get_padded_features(x)
		x_train, t_train, e_train = x[idx], t[idx], e[idx]

		x_train = torch.from_numpy(x_train).double()
		t_train = torch.from_numpy(t_train).double()
		e_train = torch.from_numpy(e_train).double()

		if val_data is None:

			vsize = int(vsize*x_train.shape[0])

			x_val, t_val, e_val = x_train[-vsize:], t_train[-vsize:], e_train[-vsize:]
            
			x_train = x_train[:-vsize]
			t_train = t_train[:-vsize]
			e_train = e_train[:-vsize]

		else:

			x_val, t_val, e_val = val_data

			x_val = _get_padded_features(x_val)
			t_val, _ = self.discretize(t_val, self.split, self.split_time)

			x_val = torch.from_numpy(x_val).double()
			t_val = torch.from_numpy(last(t_val)).double()
			e_val = torch.from_numpy(last(e_val)).double()

		return (x_train, t_train, e_train,				
				x_val, t_val, e_val)
Пример #3
0
 def _prepocess_test_data(self, x):
     return torch.from_numpy(_get_padded_features(x))
Пример #4
0
	def _prepocess_test_data(self, x):
		data = torch.from_numpy(_get_padded_features(x))
		if self.cuda:
			data = data.cuda()
		return data